Fundamentals of Computer Graphics
Peter Shirley

School of Computing
University of Utah

Michael Ashikhmin
Michael Gleicher
Stephen R. Marschner
Erik Reinhard

Kelvin Sung

William B. Thompson
Peter Willemsen

A K Peters
Wellasley, Massachusetts

Contents

Preface

1 Introduction
1.1 GrophiCsATeaE + o0c vad rmmoy B85 Eo6 smwid B i
12 MajorApplicatlons .. i cania st waii slliie wie i
13 Graphics APIs
1.4 3D Geometric Models o0 s e e v s
13 GraphicsPipsline: o3 ovd sal vvs d0d s sam o
1.6 Numercal lssues Lo
1.7 BIGIEnOY ooros ey oo siomeh S0d seoeises none o
18 SoftwareEngineering . . . © « . o0 o0 i o i i v s

2 Miscellaneous Math
20 Setiand Mappings . . . vov voaie v osan crw e rin ars e
22 Solving Quadratic Equations
23 TriponnmEmy .. v s sid eE e mieiy sk e Bie v
2l WEBIOTE o oovince moimos Sokd saierm owid bog e moeEce EoaE ks
25 2DImplictCurves . 5 o s 5 8d e v aiims v o

2.6 2D Parametric Curves
2.7 3D Implicit Surfaces
2.8 3D Parametric Curves

......................

1111111111111111111111

xi

29 ADParametricSBurfaces . @, o Ll i s did v e v e e 41
210 LinearInterpolafion o0 o6 s e sinn saw s e w as 42
211 Troeagles o oo anin s PN SRS B SaanEes 43
Raster Algorithms 51
Al Raster DIBPaYS coss ety s rename s RS SOnae e 51
3.2 Monitor Intensities and Gamma 52
33 BOBOOION o cons armmes soned Smomanaios iR RS ki 54
34 TheAlphaThennel : -z ol 588 «@ma SEEFeva o4 36
B DRI - fos e i e g e s e 57
3.6 Trangle Rasterization v o v s v e e b s 63
37 Simple Antialiasingo 67
38 ImageCaptureand Storage o v v i vov v v i s s 68
Signal Processing 71
4.1 Digital Audio: Samplingin 1D, 0000 oo 72
42 Copwoliion :c G aoais Sl Bleannan s ST i 5
43 Convolution Filters 0 o v vt it v ea s 89
4.4 Signal Processingforlmages00 o 96
4.5 BamphngE THRAIY: . o o coin vovir vwis s ms slaisd o i s 1 104
Linear Algebra 119
S0 Dsterminemis: - s S0 FE SRR TS elal TS e 119
52 Matrices. . . - . o0 e e e e e e s e e e 121
Transformation Matrices 135
6:1 Basic2DTeansforms . 0. . ool o0 o e e il 135
62 BasicIDTranslorms . .o v oo v v wsin s o nime sove s 147
63 Pranslaion o o dinEs S SlaEET LREe e B 151
6.4 Inverses of Transformation Matrices 154
6.5 Coordinate Transformations v vw i o v v b ss 154
Viewing 159
7.1 Drawing the Canonical View Volume 160
7.2 Orthographic Projection 0 v iv v i oo o 162
7.3 Perspective Projection v v v v v v vms vomen e« 166
74 Some Properties of the Perspective Transform 172

TE PERERENIEN ., . v ovieomrr s e b St b e 173

Contents wil
8 Hidden Surface Elimination 177
8.1 BSETIes: & crsdvnm i SdElaasm vy Surnness 177
B2 TEEBHEE 5805 i womid EEE e B T S B 186
9 Surface Shading 191
21 DifuseShading .o i s eovon wmmia moed pamowe EiEe 191
92 PhongShading .o e vanaen s @ peae i G 194
03 AmsticSERdINE i 0 sr e e a RS e e 197
10 Ray Tracing 201
10.1 The Basic Ray-Tracing Algorithm, 202
10.2 Computing Viewing Rayso oo oo oi . 203
10.3 Ray-Object Intersection o0 0 v iv v v v s o au 205
104 A Ray-Tracing Programo o, 209
IS "ShBAOWS -oonmen s foam e sEeE S RS S . 211
10.6 SpecularReflection . &« . .. o vt e b s 212
107 Refraction o v v v v e e os mnn s e nnnn s 213
JB (IOBEANCING o oosie v & %od s winn SLeF SRR e F 216
10.9 Sub-Linear Ray-Object Intersection00 v . 218
10.10 Constructive Solid Geometry oo .. 229
10.11 Distribution Ray Tracing00 oo v v oot 229
11 Texture Mapping 239
11.1 3D Texture MADPDIOE © v v wvis o snd vowde omd £ ds 240
112 2D Texture Mapping % - &% 05 Lod s Fin dad . 246
11.3 Tessellated Models 248
11.4 Texture Mapping for Rasterized Triangles 250
1155 Pomp Textires 5 ioom sxdasuis i S E s 252
11.6 Displacement Mapping0 i v v e v v v n o a ey 253
11.7 EnvironmentMaps o0 v 0 v v v e s e 253
11:8 Shadow MBARS . o covm eacvomssn s gl 4w DA @ s 255
12 A Full Graphics Pipeline 259
121 “CRppLRE: iy B Sty NS R SR 259
12.2 Location of Clipping Segment of the Pipeline 260
12.3 An Expanded Graphics Pipeline 264
12.4 Backface Bliminationo vni v iv oo s v caw s 265
125 TriangleStripsand Fans: . . .« « v v v v vvie s v vin o0 s 266
126 Preserved SEIE - . o oov cominm sovn soms armnes eisE s g 266
12.7 A Full Graphics Pipeline . . . ¢ o0 ¢ ioivvns vas v 267

wiil Contents
13 Data Structures for Graphics 269
131 TrigngleMeghes ;v vovir s rm i os dmir b8 5 30 269

13.2 Winged-Edge Data Structure, .00, 270

£3:3 Scenelimephs:cs s aned iaed EER G EaE S e 272

13.4 Tiling Multidimensional Arrays 274

14 Sampling 279
1] BRRarlON ;s s s BT e SR s 279

14.2 Continvous Probability 0.0 v aian 284

143 Monte CarloIntegration o« v o v w v v v v v v o v e 288

144 Choosing RandomPomnts o0 oo v v o oo ey 291

15 Curves 301
15:) EOTweR & oo SIS culbiodnasE el EENEIEE B 301
152 CorveProperies .. i o v o bia s a9 eae dia s i o 307

153 Polynomial Pisces . . ., .. ovwn s emme mms woes = 310
154 PuttingPleces Together. . .. i o0 vovve v awn i s v wn 318

55 Cobiey ooatisi Sl Uu e Sers SRiLieTirE B 321

15,6 Approximating Curves ¢ v v v v v vb s b e e v 327

157 BUDEBARY .osece sivm eweti oo s soo sasie s 00 <0 344

16 Computer Animation 347
16.1 Principlesof Animation 00000, 348

EB.2' KevEramin .o vorin sopig s s sisen sovoman s s 352

163 DeformBliong . v v civmm sow s dss ana s 5ah 360
164 CharacterAnimation . . o. oo v v s o bw o e s o i 36l

16.5 Physics-Based Animation 367
166 Procedural Technigues ovv o vovs ca v s s o 5000 o s 370

167 GroupsofObjects oo i v va o 373

TR MR T s i el e e S o 376

17 Using Graphics Hardware 379
17.1 Whatis Graphics Hardware00 in oo 379

17.2 Describing Geometry for the Hardware, 380

17.3 Processing Geometry into Pixels 387

18 Building Interactive Graphics Applications 401
18.1 The Ball Shooting Program o v v i v v in s vn o 402

182 Programmming Models: - oo v capeees wse e HH

18.3 The Modelview-Controller Architecture . , 421

e —

L

Contents ™
" 184 ExampleImplementations L. 433
185 Appbving OurResults . - L0 443
TEB MIES . o o L e e e e e e e 45
187 EXercises . . - . - o o o .o e e e e 47
19 Light 451
19,1 Radiometty 0L L e e e e e e 451
192 Transport Equation oL L. 460
193 Photometry oo o e e e e e e 462
20 Color 465
2001 Ligheand Lighr Derectoms . . 0 .0 .00 oL oo oL 466
202 Tostimualos Color Theory L o 0 000000 o0 oL L 466
20,3 CIE Trstimulus Walues 0oL 0 o 000000 oL 468
204 Chromaticity - - . - . . . o . e e 459
2035 Scotopic Lumipance . - . - . . oL Lo 472
2006 ROBMonilars 0 o e e e 472
M7 Approximate Color Munipulation . . . 0 .0 00 L L 473
208 Opponent ColorSpaces - . . - . - ..o oo 474
21 Visual Percepticn 477
210 Wision Boieros . . L . L e e e e e e e e e e 478
212 Wisual Sensitivity - - . . . L. Lo Lo oL 478
213 Spatial Vision oo 495
214 Objects, Locanwons, and Events L. 0. 0oL L. il
215 Ficture Perception . - L Lo e 517
22 Tone Reproduction 521
220 Classifealion © L e e e e, M
222 DsypamicBange . . - _ Lo 515
223 Color . 0.0 e e BT
224 Image Formadon . .. _ . 0L L L e 59
225 Freguency-Based Operatorso 324
226 Gradient-Domain Operators 0 o 000 . 0 - - . .. 2 53]
227 Spatial Operators © _ . oL L o0 oL o e 532
28 Davision L oL L oo 534
229 Sigmoids ... L 535
2270 dher Approaches . L L0 - 30
2211 Night Tonemapping - . . . o .o oo e 343
2212 DHSCUSSION . o v v v v e e e e e e e e e e e 544

X!

% Contents

23 Global lllumination 547
23.1 Particle Tracing for Lambertian Scepes 548
232 'PERTIEIE: ..o roms sosopeses eoms monst e o df . 551
233 Accurate DirectLighting v v vv o v e v vn s s 553

24 Reflection Models 561
24,1 Real-WorldMaterials . & o vn cin s vos veiavw. o 561
24.2 Implementing ReflectionModels 563
24.3 Specular Reflection Models 565
244 SmoothlayeredModel. v v v i e vnn 566
245 RoughlayeredModel 0o oo 569

25 Image-Based Rendering 577
251 ThelaghtFedd o0 00 sniinoidy Sy wabaring, By <378
252 Creating a Novel Image from a Set of Images 579

26 Visualization 583
26:1 ‘ZDSealar FieddR' . ooacs wosnoe sod siRes e EiE e miEce R e 583
26.2 - ADScalar Flebdn o cops wrnien e e e B 850 e 585

References 595

Index 613

This book is a product of several graphics courses T have taught at Indiana Univer-
sity and the University of Utah. All graphics books must choose between teaching
the low-level details “under the hood"” of graphics programs or teaching how to
use modern graphics APIs. such as OpenGL, Direct3D, and Java3D. This book
chooses the former approach. T do not have a good justification for this choice
other than that T have taught both styles of courses, and the students in the “low-
level” courses seemed to understand the material better than the other students and
even seemed to use the APIs more effectively. There are many reasons this might
be true, and the effect may not transfer to other teachers or schools. However, [
believe that teaching the fundamentals is usually the right approach, whether in
graphics, another academic discipline, or a sport.

How to Use this Book

The book begins with nine chapters that roughly correspond 1o a one-semester
course which takes students through the graphics pipeline and basic ray tracing.
It has students implement everything—i.e., it is not a “learn OpenGL" style text.
However, the pipeline presented is consistent with the one implemented in graph-
ics hardware, and students who have used the book should find OpenGL or other
common APls familiar in many ways.

Xi

xii Preface

The second part of the book is a series of advanced topics that are not highly
ordered. This allows a variety of second-semester courses and a few weeks of
advanced topics in a first semester course.

For the first semester, | would suggest the following as a possible outline of
initial assignments:

1. Math homework at the end of Chapter 2 followed by at least one in-class
exam.

Line rasterization.

Triangle rasterization with barycentric color interpolation.

B owo

Orthographic wireframe drawing,
5. Perspective wireframe drawing.

6. BSP-tree with flat-shaded triangles and wireframe edges with only trivial
z-clipping and with mouse-driven viewpoint selection.

7. Finite-precision z-buffer implementation with only trivial z-clipping.

Following these assignments, the instructor could do assignments on ray tracing
or could have the students add shadow-maps, Phong lighting, clipping, and tex-
tures to their z-buffers, or they could move the students into programming with a
3D APL

About the Cover

The cover image is from Tiger in the Water by I. W. Baker (brushed and air-
brushed acrylic on canvas, 16" by 207, www.jwbart.com),

The subject of a tiger is a reference to a wonderful talk given by Alain Fournier
(1943-2000) at the Cornell Workshop in 1998. His talk was an evocative verbal
description of the movements of a tiger. He summarized his point:

Even though modelling and rendering in computer graphics have
been improved tremendously in the past 35 years, we are still not
at the point where we can model automatically a tiger swimming in
the river in all its glorious details. By automatically T mean in a way
that does not need careful manual tweaking by an artist/expert.

The bad news is that we have still a long way to go,

The good news is that we have still a long way to go.

Preface xiii

Online Resources

The web site for this book is hup:/fwww.cs.utah.edw/ ~shirley/feg2/. I will main-
tain an errata list there as well as links to people using the book in classes. Al-
though 1 do not provide slides for the course, Rich Riesenfeld has graciously
agreed to make his excellent slides available, and a pointer to those slides will be
available at the book's web site. Most of the figures in this book are in Abobe I1-
lustrator format. | would be happy to convert specific figures into portable formats
on request. Please feel free to contact me at shirley @ cs.utah.edu.

Changes in this Edition

There are many small changes in the material from the first edition of this book,
but the two large changes are the addition of a bibliography and the addition of
new chapters written by colleagues. These colleagues are people T think are clear
thinkers and communicators, and I invited them each to write a chapter with arm-
twisting designed to get certain key topics covered. Most of them have used the
book in a class and were thus familiar with its approach. The bibliography is not
meant to be extensive, but is instead a place for readers to get started. [am sure
there are omissions there, and 1 would like to hear about any crucial references
we have missed. The new chapters are:

Signal Processing by Stephen Marschner, Comell University (Chapter 4),
Curves by Michael Gleicher, University of Wisconsin (Chapter 13).

Computer Animation by Michael Ashikhmin, SUNY at Stony Brook
{Chapter 16),

Using Graphics Hardware by Peter Willemsen, University of Minnesota
Duluth (Chapter 17).

Building Interactive Graphics Applications by Kelvin Sing, University
of Washington Bothell (Chapter 18)

Visual Perception by William B, Thompson, University of Utah
{Chapter 21).

Tone Reproduction by Erik Reinhard, University of Central Florida
(Chapter 22).

wy Preface

Acknowledgements

The following people have provided helpful comments about the book: Josh An-
dersen, Zeferino Andrade, Michael Ashikhman, Adam Berger, Adeel Bhutta,
Solomon Boulos, Stephen Chenney, Michael Coblenz, Greg Coombe, Frederic
Cremer, Brian Curtin, Dave Edwards, Jonathon Evans, Karen Feinauer, Amy
Gooch, Eungyoung Han, Chuck Hansen, Andy Hanson, Dave Hart, John Hart,
Helen Hu, Vicki Interrante, Henrik Wann Jensen, 5Shi Jin, Mark Johnson, Ray
Jones, Kristin Kerr, Dylan Lacewell, Mathias Lang, Philippe Laval, Marc Levoy,
Howard Lo, Ron Metoyer, Keith Morley, Eric Mortensen, Tamara Munzner, Koji
Nakamaru, Micah Neilson, Blake Nelson, Michael Nikelsky, James ' Brien,
Steve Parker, Sumanta Pattanaik, Matt Pharr, Peter Poulos, Shaun Ramsey, Rich
Riesenfeld, Nate Robins, Nan Schaller, Chris Schryvers, Tom Sederberg, Richard
Sharp, Sarah Shirley, Peter-Pike Sloan, Tony Tahbaz, Jan-Phillip Tiesel, Bruce
Walter, Alex Williams, Amy Williams, Chris Wyman, and Kate Zebrose.

Ching-Kuang Shene and David Solomon allowed me to borrow examples
from their works. Henrik Jensen, Eric Levin, Matt Pharr, and Jason Waltman
generously provided images, Brandon Mansfield was very helpful in improving
the content of the discussion of hierarchical bounding volumes for ray tracing.
Carrie Ashust, Jean Buckley, Molly Lind, Pat Moulis, and Bob Shirley, provided
valuable logistical support. Miranda Shirley provided valuable distractions.

I am extremely thankful to J. W, Baker helping me to get the cover | envi-
sioned. In addition to being a talented artist, he was a great pleasure to work with
personally.

Many works were helpful in preparing this book, and most of them appear
in the notes for the appropriate chapters. However, a few pieces that influenced
the content and presentation do not, and | list them here. | thank the authors for
their help. These include the two classic computer graphics texts 1 first learned
the basics from as a student: Compuier Graphics: Principles & Practice (Foley,
Wan Dam, Feiner, & Hughes, 1990), and Computer Graphics (Hearn & Baker,
1986). Other texts include both of Alan Wart's classic books (Watt, 1993, 1991),
Hill's Computer Graphics Using OpenGL (Francis 5. Hill, 2000), Angel's Inter-
active Computer Graphics: A Top-Down Approach With OpenGL (Angel, 2002),
Hughes Hoppe's University of Washington dissertation (Hoppe, 1994), and
Rogers' two classic graphics texts (D, F. Rogers, 1985, 1989),

This book was written using the BTEX document preparation software on an
Apple Powerbook. The figures were made by the author using the Adobe Hlustra-
ror package. | would like to thank the creators of those wonderful programs,

I'd like to thank the University of Utah for allowing me to work on this book
during sabbatical.

Fraface . w

 would like 1o especially thank Alice and Klaus Peters for encouraging me to
write the first edition of this book, for their great skill in bringing a book o fruition
and for their dedication to making their books rthe best they can be. [n addition
to finding many errors in formulas and language in the second edinion, they puc
in many weeks of extremely long hours in the home stretch of the process, and T
have e danbt this book would nat have been finished withour their extraordinary
clTorts,

Salt Lake City - , Peter Shirley
April 2005

r'

ﬂ1l
™ =

Introduction

The term Computer Graphics describes any use of computers to create or ma-
nipulate images. This book takes a slightly more specific view and deals mainly
with algorithms for image generation. Doing computer graphics inevitably re-
quires some knowledge of specific hardware, file formats, and usually an API' or
two. The specifics of that knowledge are 4 moving target due to the rapid evolu-
tion of the field, and therefore such details will be avoided in this text. Readers
are encouraged to supplement the text with relevant documentation for their soft-
ware/hardware environment, Fortunately the colture of computer graphics has
enough standard terminology and concepts that the discussion in this book should
map nicely to most environments. This chapter defines some basic terminalogy,
and provides some historical background as well as information sources related
to computer graphics.

1.1 Graphics Areas

It is always dangerous to try to categorize endeavors in any field, but most graph-
ics practitioners would agree on the following major areas and that they are part
of the field of computer graphics:

VAn applicarion program interfuce (AP is a software interfuce for basic operations such as line
drawing. Current popular APIs incluede OpenGL, Direct3D, and JavaiD,

2 1. Introduction

e Modeling deals with the mathematical specification of shape and appear-
ance properties in a way that can be stored on the computer. For example,
a coffee mug might be described as a set of ordered 3D points along with
some interpolation rule to connect the points and a reflection model that
describes how light interacts with the mug.

s Rendering is a term inherited from art and deals with the creation of
shaded images from 3D computer models.

s Animation is a technique to create an illusion of motion through sequences
of images. Here, modeling and rendering are used, with the handling of
time as a key issue not usually dealt with in basic modeling and rendering.

There are many other areas that involve computer graphics, and whether they are
core graphics areas is a matter of opinion. These will all be at least touched on in
the text. Such related areas include the following:

e User interaction deals with the interface berween input devices such as
mice and tablets, the application, and feedback to the user in imagery and
other sensory feedback. Historically, this area is associated with graphics
largely because graphics researchers had some of the earliest access to the
input/output devices that are now ubigquitous.

o Virtoal reality attempis to immerse the user into a 3D virtual world. This
typically requires at least stereo graphics and response 1o head motion.
For true virtual reality, sound and force feedback should be provided as
well. Because this area requires advanced 3D graphics and advanced dis-
play technology, it is often closely associated with graphics.

+ VYisualization attempts to give users insight via visual display. Often there
are graphic issues 1o be addressed in a visualization problem.

o Image processing deals with the manipulation of 2D images and 1s used in
both the fields of graphics and vision.

¢ 3D scanning uses range-finding technology to create measured 31D models.
Such models are useful for creating rich visual imagery, and the processing
of such models often requires graphics algorithms.

1.2 Major Applications

Almost any endeavor can make some use of computer graphics, but the major
consumers of computer graphics technology include the following industries:

1.3. Graphics APls o ' %

v

» Video rames increasingly use sophisticated 3D models and rendering al-
gorithms.

« Cartopns ure often rendered directly itom 30 models, Many traditional
2D cartoons use backgrounds rendercd from 310 medels which allows a
comtinunisly miwing viewpoint without huge amounts of arist time.

« Film special etTects wse almost all types of computer graphics wehaology.,
Almost every modemn (il uses digital compositing to superimpose back-
grounds with separately flmed foregroonds. Many films use computer
generated foregrounds wirlh A0 models.

o CADACAM stands for eamputer-aided desion and compute r-aided ireamu-
favturing. These fields use computer technelogy to design parts and prod-
ucts on the computer and then, using these virtwal designs. to guide the
manufacturing procedure. For example, many mechanical parts are now
designed in a 31 computer modeling package, and are then automatically
produced on a computer-controlled milling device.

e Simulation can be thought of a5 accurate videa gaming. bor example, a
flight simulator uses sophisticated 3D graphics ta simlate the experience
of Mying an airpiane. Such simulations can be extremely vseful for initial
training in safety-critical domaios such as driving, and for scenacio training
lor expencoced users such us specilic lire-fighting situations that are oo
costly or dangerous to creste physically.

Medival imaging creates meuningful images of scanned patient dara. For
example, 4 magnetic resonunce imaging (MEL) datasel is composed of a
3D rectungolar arcay of densily values. Computer graphics is used 1o create
shadcd imapes thatl belp doctors digest the most salient inlormation From
such ddla.

+ Tnformation visaalization creates images of data that do not necessarily
have a “natural” visual depiction, For example, the leraporal trend of the
price of wo different stocks does not have an vbviows visoat depiction, bot
clever graphing techiigues cun help bommans Ged petierns in swcl data,

1.3 Graphics APls

A ey part of using praphics libraries is dealing with an application progrem
snterfice (AP An APL s o software interlsce thul provides 2 model for how an

4 1. Introduction

application program can access system functionality, such as drawing an image
intr a window. Typically, the two key issues in designing graphics programs are
dealing with graphics calls such as “draw triangle™ and handling user interaction
such as a button press.

Most APIs have a user-interface toolkit of some kind that uses callbacks. Call-
backs refer to the process of using function pointers or virtual functions Lo pass a
reference to a function. For example, to associate an action with a button press, an
underlying function is dynamically associated with the button press. In this way,
the user-interface toolkit can process the event of the button press, and any action
can be associated with it by the programmer.

There are currently two dominant paradigms for APls. The first is the inte-
grated approach of Java where the graphics and user-interface toolkits are inte-
grated and portable packages that are fully standardized and supported as part of
the language. The second is represented by Direct3D and OpenGL, where the
drawing commands are part of a software library tied to a language such as C++,
and the user-interface software is an independent entity that might vary from sys-
tem to system. In this latter approach, it is problematic to write portable code,
although for simple programs it may be possible to use a portable library layer on
top of the system specific event-handling.

Whatever your choice of AP, the basic graphics calls will be largely the same,
and the concepts of this book will apply.

1.4 3D Geometric Models

A key part of graphics programs is using 3D geometric models. These models
describe 3D objects using mathematical primitives such as spheres, cubes, cones,
and polygons. The most ubiguitous type of model is composed of 3D triangles
with shared vertices, which is often called a rriangle mesh. These meshes are
sometimes generated by artists using an interactive modeling program and some-
times by range scanning devices. In either case, these models vsually contain
many triangles, most of them small, so your programs should be optimized for
such datasets,

1.5 Graphics Pipeline

Almost all modern computers now have an efficient 3D graphics pipelire. This
is a special software/hardware subsystem that efficiently draws 3D primitives in

1.6. Numerical |ssues i o : : B

perspective. Usually theve systems are optimized for processing 310 friangles with
shared vermices. The basic operations in the pipeline map the 31 vartex lacations
oy 21 sereen positions, and shade the iangles so that they hath look realistic and
appdr in proper back-to-frone arder.

Although drawing rhe trinngles in valid back-ro-front order was once the most
important research issne i computer graphics. it s now almost always solved
using the o-buffer, which uses a special memory-buffer to solve the problem in a
brute-foree manner,

It tums out thar the geometric manipulation used in the graphics pipeline can
be accomplished almast entirely in a 4D coordinate space comnposed of three tra-
dirional peometric coordinares and a fourth Aomageneons coordinate that helps
us handle perspective viewing, These 4D coordinates are manipulated using 4 by
4 marrices and 4-vectors. The graphics pipeling, therefore, contains much nia-
chinery for efficiently processing and composing such marrices and vectors. This
4 coordinate system is one of the most spbtle and Beautiful constnicts vsed in
computer science, and it s certainly e higgest ineellectual hurdlz to iung when
learming compurer graphics. A big chunk of the firsr part of every praphics book
deals with these coordinates,

The speed of most modern graphics pipelines 15 roughly proportional to the
mumber of triangles being drawn, Because interactivity is typically more immpor-
tant to applications than visual quality, i is worthwhile o mitimntee the noinber
of griangles used to represent & fodel. In additton, if the model is viewed tn
the distance, fewear riancles are needed than when the modal 15 viewed from a
claser distance. This sugeests that i is useful ro represent 2 model with a varying
fevel-of-deretd {LOLN).

1.6 Numerical issues

Many graphics programs are really just 3D numerical codes. Numerical issues
are often crucial in such programs. In the "old days,” it was very diffionlt w
handle sich issues in a robust and portable mannes because machines had ditfevent
intemal reprasentarions for nurbars. and even warse, handled exceptions in many
imcompatible fashions, Forunately. almost all modem computers conform o the
IEEE floating point standard (JEEE Standards Association, [985). This allows the
programmer 1o make many convenient assumprons about how certain numeric
conditions will be handled.

Although TEEE Roating point has many features that are valvable when cod-
g numeng algorithms. there are only a few that are crucial to know Tor most

6 1. Introduction

situations encountered in graphics. First, and most important, is to understand
that there are three “special” values for real numbers in IEEE floating point:

infinity (o<} This is a valid number that is larger than all other valid numbers.

minus infinity (—oc) This is a valid number that is smaller than all other valid
numbers,

not a number (NaN) This is an invalid number that arises from an operation
with undefined consequences, such as zero divided by zero.

The designers of IEEE floating point made some decisions that are extremely
convenient for programmers. Many of these relate to the three special values
above in handling exceptions such as division by zero. In these cases an exception
is logged, but in many cases the programmer can ignore that, Specifically, for any
positive real number a, the following rules involving division by infinite values
hold:

taf(+oc) =40

—a({+oc) = -0

+af{—oc) = -0

—af(—oc) =+0
Note that [EEE floating point distinguishes between —0 and +0). In most graphics
programs this distinction does not matter. but it is worth keeping in mind for more
classical numeric algorithms.

Other operations invelving infinite values behave the way one would expect.

Again for positive «, the behavior is:

a0 4+ 00 = 400

oo — oo = NaN

O X 00 =00

oo oo = NaN
oala = o
oc/0 =00

0/0 = NaN

1.6, Numerical lssues -

Therules in 2 Boalean expression involving lnﬁi;ita values are a5 expected;
I, Al finite valid numbers are Jess than +oq,
2. All finite valid numbers are greater than -- o<
3. —ox is less than oo,
The rales imvodving expressions that have Nal values are simiple;
1. Any arithmetic expression thal includes WaN results in NaN.
2. Any Boolean expression involving Nalv is false,
Perhaps the most useful aspect of IEEL floating point i how divide-by-zero is

handled; for any positive real number w, the [ollowing rules involving division by
zero values hoid:

Fuf +0 = 4o

—uf =l = —nx

HNote that some care roust be taken if negative zero [—{0) might wrese in a codde, bul
there are muny numenic oodes that become much simpler if the programmer takes
advantare of [EEE floating poinl. For example, consider the exprossion:

1
It

A

n—

Such expressions arise with resistors and lenses, I divide-byv-zero resuled in a
prograny crash (a5 was true in many systems before 1EEBE floating point}. then
two f statenents would be required to check for small or zero values of b or c.
Instead, with [EEE foating peint, if b or c are zero, we will get a zere valoe for o as
desired. Another common technigue v aveid special checks is o ke advantage
ol the BeHean properies of Nal, Consider the following code segment:

b= flx]

if e =) then 3

do something

Here, the funcrion f may remun “ugly”™ values such as oo or NaN, Because the
if statement is false for o = WaN ora = --o¢ and true for o = {20, na special
chicks are needed. This makes programs smaller, mere robust. and more efficient.

8 1. Introduction

1.7 Efficiency

There are no magic rules for making code more efficient. Efficiency is achieved
through careful tradeoffs, and these tradeoffs are different for different architec-
tures. However, for the foreseeable future, a good heuristic is that programmers
should pay more attention to memory access patterns than to operation counts.
This is the opposite of the best heuristic of a decade ago. This switch has oc-
corred because the speed of memory has not kept pace with the speed of proces-
sors. Since that trend continues, the importance of limited and coherent memory
access for optimization should only increase,

A reasonable approach to making code fast is to proceed in the following
order, taking only those steps which are needed:

1. Write the code in the most straightforward way possible. Compute data as
needed on the fly without storing it.

2. Compile in optimized mode.
3. Use whatever profiling tools exist to find critical bottlenecks,

4. Examine data structures to look for ways to improve locality. If possible,
make data unit sizes match the cache/page size on the target architecture.

5. If profiling reveals bottlenecks in numeric computations, examine the as-
sembly code generated by the compiler for missed efficiencies. Rewrite
source code to solve any problems you find.

The most important of these steps is the first one. Most “optimizations™ make the
code harder to read without speeding things up. In addition, time spent upfront
optimizing code is usually better spent correcting bugs or adding features. Also,
beware of suggestions from old texts; some classic tricks such as using integers in-
stead of reals may no longer yield speed because some modern CPUs can usually
perform floating point operations just as fast as they perform integer operations.
In all situations, profiling is needed 1o be sure of the merit of any optimization for
a specific machine and compiler.

1.8 Software Engineering

A key part of any graphics program is to have good classes or routines for geo-
metric entities such as vectors and matrices, as well as graphics entities such as
RGB colors and images. These routines should be made as clean and efficient as

1.8, Boftware Engineerng .)

possible. Most graphics programmers use C++, so some discussion of thar lan-
gunpe is inoonder 4 crincal issug 5 whether locaiony and displacements should
be separate classes becanse they have different operations, 2.g.. a lecation mul-
tiplied by one-half makes no geomatnc sense while one-halt of a displacament
does (Goldman, 1985y This s a persanal decision, but T helieve strongly in the
K55 {“keep it simple, scupid™) principle, and in thar light the argument for two
classes is not compalling enough to jushify the added complexity (for a counter
arpement seg (Defose, [9893). This implies that some basic classey that should
he written include:

w vector2: A 20 vector class that stores an o oand o component. [L shownld
skore these conponents in a lenglh-2 array 5o that an indexing operator can
be well supported. You showld also include operations Tor vector addition,
vector subtraction. dol product, cross product, scalar malaplication, snd
scalar division,

& vectord: A 3D vector class analogous 1o vector2,
& hvector: A homaoganegus vector with foor componenis (see Chapter 7).

& rgh: An RGB color that stores three compenents. You should also inelude
operations for REGB widition, RGB subtraction, RGB multiplicution, sealar
mulliplication, and scalur division.

o rransform: A four-by-four matrix for transformations. You shoald inelude
8 matrix rultiply und member lunciions o apply W locations, dircetions,
and surface nonmal vectors. As shown io Chapter 6, these are all dilferent

o imagar A 2D array of RGE pivels with an opgpnt operation,

oy addition. you miglst or misht now waot w add classes foc inlervals, orthonotmal
bases, and coordinae: frames. You might also consider undt-lenpth veelors, al-
though | have found them maore pain than they are worth. There ure several basic
decisions to be made which are outlined in the fullowing seetions.

1817 Float versus Doubie

Modern archirectur: sugpgests rhar keeping memary use down and maintaining
coherent memeory aceecss are the kevs o atficiency, This snpgests using single-
precision data. However, avoiding numencal probfems suggeses using dooble-
precision arithmetic. The tadeofls depend on the program, but if is pice to have

10 1. Introduction

a default in your class definitions. | suggest using doubles for geometric compu-
tation and Aoats for color computation. Where memory usage is high, as it is for
triangle meshes, | suggest storing float data, but converting to double when data
is accessed throngh member functions.

1.8.2 Inlining

Inlining 15 a key to efficiency for utility classes such as RGB. Almost all RGB
and vector functions should be inlined. Be sure to profile your code to make sure
that things are actually being inlined. Non-utility code and other large functions
should not be inlined unless the profiler shows them to be hogging runtime. Even
then be sure making them inline does not slow the code further. Note, that on most
systems, the inline function definitions must be in the header files. For member
functions, these can be linked to the declarations, for example:

class vectord {

double lengthSguared (return x({izx{)+y()=v(}
+z()wz{);)

1.8.3 Member Functions versus Non-Member Operators

For operators such as the addition of two vectors, we can make them either a
member of a vector class or an operator that exists outside of the class. 1 suggest
that such operators always exist outside of a class. This is because it is the only
solution for something like the multiplication operator for a double and a vector
{as opposed to vector times double), Since we have to make it a non-member in
such cases, we may as well be consistent and always make it a non-member. We
should make such operators as compact as possible, for example:

inline vector3 operator+(vectorl a, vectord b) ({
return vectord{ a.x(} + b.x(], a.yi)
+ biy() o auz() + bizgl))

MNote that for non-inlined operators and for some compilers, using a const ref-
erence for argument passing avoids some data copying:

1.8. Software Engineering _ _ 1

inline wecbord cperator+{Cconat vectaris a. oonsh wectorls &)

return wvackord [a. =iy + boxi], a.v¥i)
+ bhowild, a.s1) 10 b=y g

184 Inchide Guards

All classes should have inclode guards surroonding the class declarations. The
names of these goards should follow some simple naming convention, For
saanple:

difndef wuCIORIH
gdefine VECTIORSH

class vectord |

#endif 1l

Thix prevents problemns when & header file is included more than once which is
almost unavoidable in practice. Mote that when VECTOE3H is already defined,
the beader file is still opened and one line is read. For large libraries, this file
vpeniug can deminate compilation thne {Lakos, 19967, In snch cases, an ugly,
bul effective, sotution is o add a check when the include is made:

Wifndef WECTURIH 'k
#inclode <wverstord i
#andit

1.8.5 Dabugging Compiles

You shounld generously sprinkle asserts throughout your code. An assert is a
macr that stops the program if the Booleun statement il conlains 1s false. For
example:

#inerldde ~uzwert. b

assert(faksi(v.lengchi) - 1 v <« 0,0000>2 »; -

12 1. Introduction

makes sure that v is close to unit length. Asserts are excellent to add during
debugging as well as during development. If you ever add one, leave it in. You
might wefl add a bug later that triggers it again. Note that in an optimized run,
you need to define the preprocessor variable NDEBUG to turn off the asserts. This
is typically accomplished with the compiler flag -DNDEBUG. When compiling
in debugging mode, variables can be set to illegal values such as NaN so that
uninitialized variables crash fhe program when used,

1.8.6 Experimental Debugging

If you ask around, you may find that as programmers become more experienced,
they use traditional debuggers less and less. One reason for this is that using such
debuggers is more awkward for complex programs than for simple programs,
Another reason is that the most difficult errors are conceptual ones where the
wrong thing is being implemented, and it is easy to waste large amounts of time
stepping through variable values without detecting such cases.

In graphics programs there is an alternative to traditional debugging that is
often very useful. The downside to it is that it is very similar to what computer
programmers are taught not to do early in their careers, so you may feel “naughty™
if you do it: we create an image and observe what is wrong with it. Then, we
develop a hypothesis about what is causing the problem and test it. For example,
in a ray tracing program we might have many somewhat random looking dark
pixels. This is the classic “shadow acne™ problem that most people run into when
they write a ray tracer. Traditional debugging is not helpful here; instead, we must
realize that the shadow rays are hitting the surface being shaded, We might notice
that the color of the dark spots is the ambient color, so the direct lighting is what
is missing, Direct lighting can be turned off in shadow, so you might hypothesize
that these points are incorrectly being tagged as in shadow when they are not.
To test this hypothesis, we could tum off the shadowing check and recompile.
This would indicate that these are false shadow tests, and we could continue our
detective work. The key reason this method can sometimes be good practice is
that we never had to spot a false value or really determine our conceptual error.
Instead, we just narrowed in on our conceptual error experimentally. Typically
only a few trials are needed to track things down, and this type of debugging is
enjoyable.

In the cases where the program crashes, a traditional debugger is useful for
pinpointing the site of the crash. You should then start backtracking in the pro-
gram, using asserts and recompiles, to find where the program went wrong. These
asserts should be left in the program for potential future bugs you will add. This

1.8, Software Engingering e . 13

again means the traditional step-thaugh process s avaided, because ihat would
ol be adding the valuable asserts ta your program.

Motes

The discussion of seftware engineering is muenced by the Effective O++ se-
ries (hevers, 1995, 1997}, the Fxreme Programming movement(Beck & Andres,
20041, and (tKemighan & Pike, 1999 The discusston of cxperimental deboegeing
i based on discussions with Steve Parker. There are 3 number of annual conler-
ences related to computer graphics. and these cun be found by duing web scarches
by their title:

+ ACM SIGGRAPI Conference

« Graphics Interface Conference

« Game Developers' Conference {GDIC)

¢ Eurographics Confercnce

o Pacific Graphics Conference

¢ Eurographics Syrmposiom on Bendering o
¢ S0lid Modeling Conference

s TEEE Visualization Confercnce i

aafyalihml I

Miscelléneous Math

Much of graphics is just translating math directly into code. The cleaner the math,
“the cleaner the resulting code. Thus, much of this book concentrates on using just
the right math for the job. This chapter reviews various tools from high schoal
and college mathematics, and is designed to be used more as a reference than as
a tutorial. It may appear to be a hodge-podge of topics, and indeed it is; each
topic is chosen because it is a bit unusual in “standard™ math curricula, because it
is of central importance in graphics, or because it is not typically treated from a
geometric standpaoint. In addition to establishing a review with the notation used
in the book, the chapter also emphasizes a few points that are sometimes skipped
in the standard undergraduate curricula, such as baryceniric coordinates on tri-
angles. This chapter is not intended to be a rigorous treatment of the material;
instead intuition and geometric interpretation are emphasized. A discussion of
linear algebra is deferred until Chapter 5 just before transformation matrices are
discussed. Readers are encouraged to skim this chapter to familiarize themselves
with the topics covered and to refer back to it as needed, The exercises at the end
of the chapter may be useful in determining which topics need a refresher.

2.1 Sets and Mappings

Mappings, also called functions, are basic to mathematics and programming. Like
a function in a program, a mapping in math takes an argument of one type and
maps it to (returns) an object of a particular type. In a program we say “type:” in

15

Figure 2.1. A bijection {
and the inverse function 177,
Note that 1 is also a bijec-
ticn.

16 2. Miscellaneous Math

math we would identify the set. When we have an object that is a member of a
set, we use the £ symbol. For example:

aes,

can be read “a is a member of set 5. Given any two sets A and B, we can create
a third set by taking the Cartesian product of the two sets, denoted A x B. This
set A = B is composed of all possible ordered pairs (a,b) where 0 € A and
b € B. As a shorthand, we use the notation A” to denote A »x A. We can extend
the Cartesian product to create a set of all possible ordered triples from three sets,
and so on for arbitrarily long ordered tuples from arbitrarily many sets,

Common sets of interest include:

e E: the real numbers,

e B*: the non-negative real numbers (includes zero),

o ?: the ordered pairs in the real 2D plane.

o [the points in n-dimensional Cartesian space.

e 7 the integers.

e 5% the set of 3D points (points in &%) on the unit sphere.

Note that although 57 is composed of points embedded in three-dimensional
space, they are on a surface that can be parameterized with two variables, so it
can be thought of as a 2D set. Notation for mappings uses the arrow and a colon,
for example:

frR—Z,

which you can read: “There is a function called f that takes a real number as input
and maps it to an integer” Here, the set that comes before the arrow is called the
domain of the function, and the set on the right-hand side is called the rarger, The
subset of the target that contains all image points under the function (i.e., points
in Z so that there exists a point in &) is called the range of the function. Computer
programmers might be more comfortable with the equivalent language: “There is
a function called f which has one real argument and returns an integer™. In other
words, the set notation above is equivalent to the common programming notation:

integer f(real) + equivalent — f:R— Z.

So the colon-arrow notation can be thought of as a programming syntax, It's that
simple.

2.1. Sets and Mappings 17

2.1.1 Inverse Mappings

If we have a function f : A — B, there may exist an inverse function = : B —
A, which is defined by the rule f~1(h} = a where h = f(a). This definition only
works if each & € B is an image point under [and if there is only one point a such
that f{a) = b. Such mappings or functions are called bijecrions. A bijection maps
every a & A to a unique b € B, and for every b £ B, there is exactly onea € A
such that f(a) = b (Figure 2.1). A bijection between a group of riders and horses
indicates that everybody rides a single horse, and every horse is ridden. The two
functions would be riderf horse) and horse(rider). These are inverse functions of
each other. Functions that are not bijections have no inverse (Figure 2.2).

An example of a bijection is f : B — R.with f(z) = 2*. The inverse
function is f~'(x) = 7. This example shows that the standard notation can be
somewhat awkward because 7 is used as a dummy variable in both f and f~'. It
is sometimes more intuitive to use different dummy variables, with y = () and
x = f~'{y). This yields the more intuitive y = z* and = . An example of a
function that does not have an inverse is sqr : B — R, where sqr(z) = 2%, This
is true for two reasons: first #2 = (—x)}?, and second no members of the domain
map to the negative portions of the target. Note that we can define an inverse if
we restrict the domain and range to BY. Then /7 is a valid inverse.

2.1.2 Intervals

Often we would like to specify that a function deals with real numbers that are
restricted in value. One such constraint is to specify an interval. An example of
an interval is the real numbers between zero and one, not including zero or one.
We denote this (0,1). Because it does not include its endpoints, this is referred
to as an open interval, The corresponding closed interval is denoted with square
brackets: [0, 1]. This notation can be mixed, i.e., [0, 1) includes zero but not one.
When writing an interval [a, b], we assume that @ < b The three common ways to
represent an interval are shown in Figure 2.3, The Cartesian products of intervals
are used often. For example, to indicate that a point x is in the unit cube in 3D,
we say x € [0, 1]%.

Intervals are particularly useful in conjunction with set operations: infersec-
tion, union, and difference. For example, the intersection of two intervals is the
set of points they have in common., The symbol 7 is used for intersection. For ex-
ample, [3, 5)M /4, 6] = [4. 5). For unions, the symbol U is used to denote points in
either interval. For example, [3,5) U [4, 6] = [3, 6]. Unlike the first two operators,
the difference operator produces different results depending on argument order.

Figure 2.2. The function
g does not have an inverse
because two elements of d
map to the same element
of E The function h has no
Inverse because element T
of F has no element of o
mapped to it

—3

a b

a<x=ph

fa, b]

Figure 2.3. Three equiv-
glent ways fto denote the
interval from & fto & that
Inciudes b but not a.

interval A
C \
7 5
interval B
C . |
L ol
4 6
AnE L%
L/
C \yA-B
L 7
BE-A | i |
L d

Figure 2.4. Interval opera-

tions on [3,5) and [4,6].

18 2. Miscellaneous Math

The minus sign is used for the difference operator, which returns the points in the
left interval that are not also in the right. For example, [3.5) — [4,6] = [3.4) and
[4,6] — [3,5) = [5,6]. These operations are particularly easy to visualize using
interval diagrams (Figure 2.4),

2.1.3 Logarithms

Although not as prevalent as they were before caleulators, logarithms are often
useful in problems where equations with exponential terms arise, By definition,
every logarithm has a base a. The “log base a” of = is written log, , and is
defined as “the exponent to which @ must be raised to get =" i.e.,

y=log,z & a'=m
MNote that the logarithm base @ and the function that raises a to a power are inverses

of each other. This basic definition has several consequences:
aoBal®) = g
log,(a®™) = =
log,(xy) = log, = + log, v.
log, («c/y) = log, x — log, .
log, = = log, b log, x.
When we apply calculus to logarithms, the special number e = 2.718. ., tums

oul o be helpful, The logarithm with base e is called the natural logarithm. The
natural logarithm arises so often we adopt the common shorthand In to denote it:

Inz = log, =

Note that the “=" symbol can be read “is equivalent by definition” Like 7, the
special number ¢ arises in a remarkable number of contexts. Many fields use a par-
ticular base in addition to & for manipulations and omit the base in their notation,
i.e., log x. For example, astronomers often use base 10 and theoretical computer
scientists often use base 2. Becaose computer graphics borrows technology from
many fields we will avoid this shorthand.

The derivatives of logarithms and exponents illuminate why the natural loga-
rithm is “natural™

a1
dx ' Ea rlna
dr—iﬂ"’ =a"lna

The constant multipliers above are unity only for a = ¢

2.2, Solving Quadratic Equations 19

2.2 Solving Quadratic Equations

A quadratic equation has the form
Az® + Bz +C =10,

where z is a real unknown, and A, B, and C are known constants, If you think
aof a 2D xy plot with y = Ax® + Bz + C, the solution is just whatever = values
are “zero crossings” in y. Because y = Ax? + Bz + (' is a parabola, there will
be zero, one, or two real solutions depending on whether the the parabola misses,
grazes, or hits the z-axis (Figure 2.5),

To solve the quadratic equation analytically, we first divide by A:

- I R e i

Then we “complete the square” to group terms:

Y VT

Moving the constant portion to the right-hand side and taking the square root gives

B B C
A= Nwm 1
Subtracting B/(2A) from both sides and grouping terms with the denominator
2A gives the familiar form:

oo —B:VBTdAC
= = :

Here the “+" symbol means there are two solutions, one with a plus sign and one
with a minus sign, Thus 3 & 1 equals “two or four”. Note that the term which
determines the number of real solutions is

{2.1)

D = B* —44C,

which is called the discriminant of the quadratic equation. If [0 > 0, there are two
real solutions (also called roots). If D = 0, there is one real solution (a “double™
root). If D < 0, there are no real solutions.

For example, the roots of 22 + 6z + 4 = Oare x = —1 and x = —2, and the
equation % + = + 1 has no real solutions. The discriminants of these equations
are) = 4 and D = —3, respectively, 5o we expect the number of solutions given,
In programs, it is usually a good idea to evaluate D first, and retumn “no roots”
without taking the square root if [J is negative.

1\ /
\J" "

vh

Figure 2.5. The geometric
interpratation of the roots
ol a quadratic equation is
the intersection points of a
parabola with the x-axis,

Figure 2.6. Two half-
lines cut the unit circle into
two arcs. The length of
gither arc is a wvalid an-
gla “betwean” the two hali-
lines. Either we can use the
convantion that the smallar
length is the angle, or that
the two half-lines are spec-
ified in a certain order and
the arc that determines an-
gle ¢ is the one swept out
counterclockwise from the
first 1o the second half-lina,

g N\~ ~ 8

Figure 2.7. A geo-
metric demonsiration of the
Pythagorean theorem,

20 2. Miscellaneous Math

2.3 Trigonometry

In graphics we use basic trigonometry in many contexts. Usually, it is nothing too
fancy, and it ofien helps to remember the basic definitions.

2.3.1 Angles

Although we take angles somewhat for granted, we should return to their defini-
tion 50 we can extend the idea of the angle onto the sphere. An angle is formed
between two half-lines (an infinite ray stemming from an origin} or directions,
and some convention must be used to decide between the two possibilities for the
angle created between them as shown in Figure 2.6, An angle is defined by the
length of the arc segment it cuts out on the unit circle. A common convention is
that the smaller arc length is used, and the sign of the angle is determined by the
order in which the two half-lines are specified. Using that convention, all angles
are in the range [—w, 7].

Each of these angles is the length of the arc of the unit circle that is "cut" by
the twe directions. Because the perimeter of the unit circle is 2w, the two possible
angles sum to 2. The unit of these arc lengths is radians. Another common unit
is degrees, where the perimeter of the circle is 360 degrees, Thus, an angle that is
w radians is 180 degrees, usually denoted 180°. The conversion between degrees
and radians is

degrees = L:D radians;

e w
radians = 1% degrees.

2.3.2 Trigonometric Functions

Given a right triangle with sides of length a, o, and /i, where h is the length of
the longest side (which is always oppesite the right angle), or hvperenuse, an
important relation is described by the Pythagorean theoren:

a®+o® = hi

You can see that this is true from Figure 2.7, where the big square has area (a+0)”,
the four triangles have the combined area 2a0, and the center square has area h*.

Because the triangles and inner square subdivide the larger square evenly,
we have 2a0 + h® = (a + 0)?, which is easily manipulated to the form above.

2.3. Trigonometry 21

We define sine and cosine of @, as well as the other ratio-based trigonometric

expressions: sing = o/fh,
csc ¢ = hfo,
cosg = a/lh,
sec @ = hfa,
tang = o/a,
cot g = a/o.

These defininions allow us to set up polar coordinates, where a point is coded
as a distance from the origin and a signed angle relative to the positive r-axis
{(Figure 2.8). Note the convention that angles are in the range ¢ € (—w=, |, and
that the positive angles are counterclockwise from the positive x-axis, This con-
vention that counterclockwise maps (o positive numbers is arbitrary, but it is used
in many contexts in graphics so it is worth committing to memory.

Trigonometric functions are periodic and can take any angle as an argument.
For example sin(A) = sin(4 + 27). This means the functions are not invertible
when considered with the domain B. This problem is avoided by restricting the
range of standard inverse functions, and this is done in a standard way in almost
all modern math libraries (e.g., (Plauger, 1991)). The domains and ranges are:

agin : [=1,1] = [—m/2.w/2],
acos : [—1,1] — [0, 7],
atan : B — [—-w/2,7/2],

atan2 : R — |[—m,).

(2.2)

The last function, atan2(s, &) is often very useful, It takes an s value proportional
to sin A and a ¢ value that scales cos A by the same factor, and returns A, The
factor is assumed to be positive. One way to think of this is that it returns the
angle of a 2D Cartesian point (s,) in polar coordinates (Figure 2.9},

2.3.3 Useful Identities
This section lists without derivation a variety of useful rigonometric identities.
Shifting identities; sin(—A) = —sin A
cos(—A) = cosd
tan{—A4) = —tan 4
gin(m/2—A) =
cos(m/2—A)= sinA
tan{w/2— A) = cot A

cos A

A
X

Figura 2.8. Polar coordi-
natas for the point (x;, ¥s) =
(1.v3) I8 (5, ¢a) = (2, m/3),

x=1

Figure 2.9. Tha function
atan2(s,c} retums the angle
A and is often very useful in

graphics.

& 22 2. Miscellaneous Math

Pythagorean identities: sin? A +cos?A =1
sec® A —tan® 4 = 1
csc? A—cot?A=1
Addition and subtraction identities:
sin{A + B) = sin Acos B + sin Beos A
sin{A — B) = sin Acos B —sin Beos A
gin(2A4) = 2sin Acos A4
cos(A+ B) =cos Acos B = sin Asin B
cos(A — B) = cos Acos B 4 sin Asin B
cos(2A) = cos® A —sin® A
tan 4 + tan B

tan(4+ B) = T Atan B

tan 4 — tan B
1+ tan Atan B

2tan A
) = T A

tan(A — B) =

Half-angle identities: ”
sin“(A/2) =(1—cos A)/2

cuszl:_»"l;"i] = {14+ cosd),/2
Product identities:
sin Asin B = —(cos(A + B) — cos{A — B))/2
sindeos B = (sin{d 4+ B) +sin(4 - B))/2
cos Aeos B = (cos(4+ B) +cos(4A— B))/2
The following identities are for arbitrary triangles with side lengths a, b, and ¢,
each with an angle opposite it given by A, B, C' respectively (Figure 2.10).

sin.A _ sin B . sin (Law of sines)
i b C

2 =a? + b — 2abcos C (Law of cosines)
b a+b tan (43E)
o=t~ tn (5)

The area of a tiangle can also be computed in terms of these side lengths:

(Law of tangents)

Figure 2.10. Geometry for 1
triangie laws. triangle area = E\f{u +bh+e)—a+b+e)la—b+e)lat+b-c).

2.4. Vectors 23

2.4 \Vectors

A vector describes a length and a direction, It can be usefully represented by an
arrow, Two vectors are equal if they have the same length and direction even if we
think of them as being located in different places (Figure 2.11). As much as pos-
sible, you should think of a vector as an arrow and not as coordinates or numbers.
At some point we will have to represent vectors as numbers in our programs, but
even in code they should be manipulated as objects and only the low-level vector
operators should know about their numeric representation (DeRose, 1989). Vec-
tors will be represented as bold characters, e.g., a. A vector’s length is denoted
llal|. A unit vector is any vector whose length is one. The zero vector is the vector
of zero length. The direction of the zero vector is undefined.

Vectors can be used to represent many different things. For example, they can
be used to store an offser, also called a displacement. If we know “the treasure is
buried two paces east and three paces north of the secret meeting place,” then we
know the offset, but we don't know where to start. Vectors can also be used to
store a location, another word for position or point. Locations can be represented
as a displacement from another location. Usually there is some understood origin
location from which all other locations are stored as offsets. Note that locations
are not vectors, As we shall discuss, you can add two vectors. However, it usually
does not make sense to add two locations unless it is an intermediate operation
when computing weighted averages of a location (Goldman, 1985). Adding two
offsets does make sense, so that is one reason why offsets are vectors, But this
emphasizes that a location is not a offset; it is an offset from a specific origin
location, The offset by itself is not the location.

2.4.1 Vector Operations

Vectors have most of the usual arithmetic operations that we associate with real
numbers, Two vectors are equal if and only if they have the same length and direc-
tion. Two vectors are added according to the parallelogram rule. This rule states
that the sum of two vectors is found by placing the tail of either vector against the
head of the other (Figure 2.12). The sum vector is the vector that “completes the
triangle” started by the two vectors. The parallelogram is formed by taking the
sum in either order. This emphasizes that vector addition is commutative:

a+b=hb+a.

Note that the parallelogram rule just formalizes our intuition about displacements.
Think of walking along one vector, tail to head, and then walking along the other.

.

Figure 2.11. These two
vactors ara the same be-
cause they have the same
length and direction.

Figure 2.12. Two vec-
tors are added by aranging
tham head fo tail. This can
be done in either order,

_—a
e

Figure 2.13. The vecior
-8 has the same |angth
but opposite direction of the
veclor a,

Figure 2.14, Vector sub-
traction is just vector addi-
tlon with a reversal of the

sacond argument.

Figure 2.15. Any 20 vec-
tor ¢ can be represented
by & weighted sum of any
two non-parallel 20 vectors
aandb.

l"_
X
05
L
£ = ttllﬁy
2X

Figure 2.16. A 2D Carta-
sian basis for vectors.

24 2. Miscellaneous Math

The net displacement is just the parallelogram diagonal. You can also create a
unary minus for a veclor: —a (Figure 2.13). This is just a vector with the same
length but opposite direction. This allows us to also define subtraction:

b-a=-a+bhb.

You can visualize vector subtraction with a parallelogram (Figure 2.14). We can
wrile
a+(b—a)="h

Vectors can also be multiplied. In fact, there are many ways we can take products
involving vectors. First, we can scale the vector by multiplying it by a real number
k. This just multiplies the vector’s length without changing its direction. For
example, 3.5a is a vector in the same direction as a but it is 3.5 times as long as a.
There are several ways to take the product of two vectors. We later discuss three
of them: the dot product, the cross product, and the determinant,

2.4.2 Cartesian Coordinates of a Vector

A 2D vector can be written as a combination of any two non-zero vectors which
are not parallel. This property of the two vectors is called linear independence.
Twao such vectors which are linearly independent form a 2D basis, and the vectors
are thus referred to as basis vectors. For example, a vector ¢ may be expressed as
a combination of two basis vectors a and b (Figure 2.15):

¢ = a.a-+ b.b. (2.3)

Mote that the weights o, and b, are unique. This is especially useful if the two
vectors are erthogonal, i.e., they are at right angles to each other. It is even more
useful if they are also unit vectors in which case they are orthonormal. 1f we
assume two such “special” vectors x and y are known to us, then we can use
them to represent all other vectors in a Carfesian coordinate system, where each
vector is represented as two real numbers. For example, a vector a might be
represented as
a=ur,Xx+ .y,

where x, and y, are the real Cartesian coordinates of the 2D vector a (Fig-
ure 2.16). Note that this is not really any different conceptually from Equation 2.3,
where the basis vectors were not orthonormal. But there is an advantage to a
Cartesian coordinate system; by the Pythagorean theorem, the length of a is

llall = v/xZ + ui.

2.4, Vectors 25

By convention we write the coordinates of a either as an ordered pair (7., ya) or
a column matrix:
;::u]
a= ;
[iﬁ'ﬂ:

Which we use will depend on typographic convenience. We will also occasionally
write the vector as a row matrix, which we will indicate as a™:

T

a =z gals

We can also represent 3D, 4D, etc., vectors in Cartesian coordinates. For the 3D
case we use a basis vector 2 which is orthogonal to both x and y.

2.4.3 Dot Product

The simplest way to multiply two vectors is the dor product. The dot product of
a and b is denoted a - b and is often called the scalar product because it returns
a scalar. The dot product returns a value related to its arguments’ length and the
angle o between them (Figure 2,17):

a-b=|al [|b] cose, (2.4)

The most common use of the dot product in graphics programs is 10 compute the
cosine of the angle between two vectors,

The dot product can also be used to find the projection of one vector onto
another. This is the length a—b of a vector a that is projected at right angles onto
a vector b (Figure 2.18):

a-b
a—h = ||a|| coS g = m (2.5)

The dot product obeys the familiar associative and distributive properties we have
in real arithmetic:
a-b=ba
a-(b+cl=a-b+a:c (2.6)
{ka)-b=a-(kb)="Fka b.
If 2D vectors a and b are expressed in Cartesian coordinates, we can take ad-
vantage of x - x = ¥ - ¥ = 1 and x - ¥ = 0 1o derive that their dot product
is
a:b = (z.x + yay) - (2sX + ty)
= ZaZp(X - X} + Zays(X - ¥) + Toyaly - X) + Yats(¥ - ¥)
= EaTh + Yallh-

a*b = |lall libll cosd

Figure 2.17. The daot
product is ralated to length
and angle and is one of the
most important formulas in

graphics,

Figure 2.18. The projec-
fion of a onto b is a length
found by Equation 2.5.

Figure 2.19. The cross
product a = bis a 3D vector
perpendicular fo both 3D
vectors @ and b, and its
length s equal to the area
of the parallelogram shown.

26 2. Miscellaneous Math

Similarly in 3D we can find

a b =ax,r04+ Yalip + 2azn

244 Cross Product

The cross product a = b is usoally used only for three-dimensional vectors; gen-
eralized cross products are discussed in references given in the chapier notes. The
cross product returns a 3D vector that is perpendicular to the two arguments of
the cross product. The length of the resulting vector is related to sin o

la x bj| = [la] ||b]| sin ¢.

The magnitude ||a = b|| is equal to the area of the parallelogram formed by vectors
a and b, In addition, a » b is perpendicular to both a and b (Figure 2.19). Note
that there are only two possible directions for such a vector. By definition the
vectors in the direction of the x-, v- and z-axes are given by

¥ = {1,0,00,
= (0,1,0),
z = (0,0,1),

and we set as a convention that x = ¥ must be in the plus or minus = direction,
The choice 1s somewhat arbitrary, but it is standard to assume that

Z=XXY.

All possible permutations of the three Cartesian unit vectors are:

Xxy = &
YyXX = =&
YXZE = X,
ZXY = -X.
ERX = +¥,
XXZE = —y.

Because of the sin ¢ property, we also know that a vector cross itself is the
zero-vector, 50 x % % = 0 and s0 on. Note that the cross product is nof commula-
tive, L.e., x x ¥ # y = x. The careful observer will note that the above discussion

2.4, Vectors 27

does not allow us 1o draw an unambiguous picture of how the Cartesian axes re-
tate. More specifically. if we put x and y on a sidewalk, with x pointing East
and y pointing North, then does 2 point up to the sky or into the ground? The
usual convention is to have z point to the sky. This is known as a righr-handed
coordinate system. This name comes from the memory scheme of “grabbing” x
with your righr palm and fingers and rotating it toward y. The vector = should
align with your thumb. This is illustrated in Figure 2.20,
The cross product has the nice property that

axb+ecl=axb+axc,

and
ax (kb) = kla x b).

However, a consequence of the right-hand rule is
axb=—{bxa)

In Cartesian coordinates, we can use an explicit expansion to compute the cross
product:
ax b= (r.x+y.v+ 2.8 % [7:x + iy + 22)
= FaBpX X X+ Tl X X ¥ + TupX X B
+ YTy X X4 YalbY X ¥ F PaTpy X B (2.7
+ T ThE XN X+ ZaME XY T ZiE X T

= (YaZp — Zalp)X + (20T — TaZs)¥ + (Falls — YaTs).

So, in coordinate form,

ax b= (ygizs — Zalb: 2aTh — TaZty Tals — YaTh)- (2.8)

2.4.5 Orthonormal Bases and Coordinate Frames

Managing coordinate systems is one of the core tasks of almost any graphics
program. Key to this is managing orthonarmal bases. Any set of two 2D vectors
u and v form an orthonormal basis provided they are orthogonal (at right angles)
and are each of unit length. Thus,

[[u| = ljv|| = 1.

and
u-v=10

-a =h

Figure 2.20. The “right-
hand rule" for cross prod-
ucts. Imagine placing the
base of your right palm
whara a and b join at their
tails, and pushing the ar-
row of & toward b. Your ex-
tendad right thumb should
point toward a = b.

28 2. Miscallaneous Math

In 3D, three vectors u, v, and w form an orthonormal basis if
[lull = (vl = lw]l =1,

and
u-v=v-w=w-u=I(.

This orthonormal basis is right-handed provided
W=V,

and otherwise it 1% left-handed.

Note that the Cartesian canonical orthonormal basis is just one of infinitely
many possible orthonormal bases. What makes it special is that it and its implicit
origin location are used for low-level representation within a program. Thus,
the vectors x, v, and z are never explicitly stored, and neither is the canonical
origin location o. The global model is typically stored in this canonical coordinate
system, and it is thus often called the global coordinate system. However, if we

Figure 2.21. There |s always a master or "cancnical” coordinate system with origin o and
orthonormal basis x, ¥, and z. This coordinate system is usually defined to be aligned to the
global model and Is thus often called the "giobal” or "world " coordinate system. This origin
and basis vectors are never stored explicithy. All other vectors and locations are stored with
coordinates that relate them to the global frame. The coordinate system associated with tha
plana are explicitly stored in terms of global coordinates.

2.4. Vectors 29

want to use another coordinate system with origin p and orthonormal basis vectors
u, v, and w, then we do store those vectors explicitly. Such a system is called
a frame of reference or coordinate frame. For example. in a flight simulator, we
might want to maintain a coordinate system with the origin at the nose of the
plane, and the orthonormal basis aligned with the airplane. Simultaneously we
would have the master canonical coordinate system (Figure 2.21). The coordinate
system associated with a particular object, such as the plane, is usually called a
local coordinate system.

At alow level, the local frame is stored in canonical coordinates. For example,

U= (Ty. Pu: 2u) = X+ pu¥ + 2,2
A location implicitly includes an offset from the canonical origin:
P = (i Yo 3p) = O+ TpX + Yp¥ + 2p8.

MNote that if we store a vector a with respect (o the wvw frame, we store a triple
(ta, vy, w,) which we can interpret geometrically as:

(g, Uay iy) = U4 gV + W

To get the canonical coordinates of a vector a stored in the u v w coordinate
system, simply recall that u, v, and w are themselves stored in terms of Cartesian
coordinates, so the expression u,u + v, v + w,w 15 already in Cartesian coor-
dinates it evaluated explicitly. Using matrices to manage changes of coordinate
sysiems is discussed in Sections 6.2.1 and 6.5.

2.4.6 Constructing a Basis from a Single Vector

Often we must construct an orthonormal basis from a single vector, i.e., given a
vector a, we want an orthonormal u, v, and w such that w points in the same
dircetion as a (Hughes & Mdller, 1999), This cannot be done uniguely, but typi-
cally all we need is a robust procedure to find any one of the possible bases. This

can be done as follows; =

S
llal.

To get u and v, we need to find a vector t that is not collinear with w. To do this,

simply set t equal to w and change the smallest magnitude component of t to 1.

For example, if w = (1/v/2, ~1/+/2,0) then t = (1/v/2, —=1/v/2,1). The u and

v follow easily:
Lo w

u=s_———
lit = wi,

V=W X 1.

Figure 2.22. An implicit
function f{x,y) = 0 can be
thought of as a height fiaid
where fis the height (top).
A path whera the height is
zarp is the Implicit curve
{bottom).

fayl=x2+py -1

= y

x=1 x=2

Flgure 2.23. An implicit
function fix,y) = @ can be
thought of as a height field
where [is the height (top).
A path where the height is
zaro is the implict curve
{bBottom),

30 2. Miscellaneous Math

2.5 2D Implicit Curves

Intuitively, a curve is a set of points that can be drawn on a piece of paper without
lifting the pen. A common way to describe a curve is using an implicit equation.
An implicit equation in two dimensions has the form

fla,y) = 0.

The function f(z,y) returns a real value. Points (r, i) where this value is zero
are on the curve, and points where the value is non-zero are not on the curve. For
example, let’s say that f{r, y) is

flzy) = (z — 2 + (g — a)® = 17, (2.9)

where (., y.) is a 2D point and r is a non-zero real number. If we take f{r, y) =
(), the points where this equality hold are on the circle with center (i, y.) and
radias r. The reason that this is called an “implicit™ equation is that the points
{2, i} on the curve cannot be immediately calculated from the equation, and in-
stead must be determined by plugging (. i) into f and finding out whether it is
#ero or by solving the equation. Thus, the points on the curve are not generated by
the equation explicitly, but they are buried somewhere implicitly In the equation,

It is interesting to note that f does have values forall (o, y). We can think of f
as a terrain, with sea-level at f = 0 (Figure 2.22). The shore is the implicit curve.
The value of f is the altitude. Another thing to note is that the curve partitions
space into regions where f > 0, f < (and f = 0. So you evaluate f to decide
whether a point is “inside” a curve. Note that f(z,y) = c is a curve for any
constant ¢, and ¢ = (is just used as a convention. For example if f{z,y) = 2% +
y* — 1, varying ¢ just gives a variety of circles centered at the origin (Figure 2.23).

We can compress our notation using vectors. If we have ¢ = (ir., .} and
p = (&,), then our circle with center ¢ and radius r is defined by those position
vectors that satisfy

(p-¢)-(p—c)—r*=0.

This equation, if expanded algebraically, will yield Equation 2.9, but it is easier
to see that this 1s an equation for a circle by “reading” the equation geometrically.
It reads, “points p on the circle have the following property: the vector from ¢
o p when dotted with itself has value +2." It is also easier to implement vector
equations than implementing fully expanded equations if you implement a vector
type in your code: the cut-and-paste errors invelving @, y. and z will go away.
Because a vector dotted with itself is just its own length squared, we could also
read the equation as, “points p on the circle have the following property: the

vector from ¢ 1o p has squared length ="

2.5, 2D Implicit Curves 3

Even better, is to observe that the squared length is just the squared distance

from ¢ to p, which suggests the equivalent form
Ilp—ef*—r*=0,
and, of course, this suggests
lp—<|l =r=0.

The above could be read “the points p on the circle are those a distance r from
the center point ¢.” which is as good a definition of circle as any. This illustrates
that the vector form of an equation often suggests more geometry and intuition
than the equivalent full-blown Cartesian form with «s and ys. For this reason, it is
usually advisable to use vector forms when possible. In addition, you can support
a vector class in vour code; the code is cleaner when vector forms are used. It
takes a little while to get used to vectors in these equations, but once you get the
hang of it. the payoff is large.

251 The 2D Gradient

If we think of the function f(x.y) as a height field with height = f{r.y), the
gradient vector points in the direction of maximum upslope. ie., straight uphill.
The gradient vector ¥ [z, y) is given by

V(e y) = (*‘” ﬁ) .

A’ Ay

The gradient vector evaluated at a point on the implicit curve flz,y) = 015
perpendicular to the tangent vector of the curve at that point. This perpendicular
vector is usually called the normal veetor to the curve, In addition, since the
gradient points uphill, it indicates the direction of the fz, y) = 0 region,

In the context of height fields, the geometric meaning of partial derivatives and
gradients is more visible than usual. Suppose that near the point (a, b), f(z, y) is
a plane (Figure 2.24), There is a specific uphill and downhill direction. At right
angles to this direction is a direction that is level with respect to the plane. Any
intersection between the plane and the f(x, y) = U plane will be in the direction
that is level. Thus the uphill/downhill directions will be perpendicular to the ling
of intersection f{x, y) = 0. To see why the partial derivative has something to do
with this, we need to visualize its geometric meaning, Recall that the conventional
derivative of a 1D function y = glx) is

g . B . glr+ Ar) — glx)
— = 1 = lim

= — = . 2.10
dr Az—=0 AT Ar—i Az ()

What this measures is is the slope of the rangent line to g (Figure 2.25).

Figure 2.24. A surface
height = fix,.y} is locally pla-
nar near (x,yl = (a.b). The
gradient is a projection of
the uphill direction onto the
height = 0 plane.

'rll.

N
Ay

Figure 2.25. The deriva-
tive of a 1D function mea-
sures the slope of the line
tangent to the curve

itk

Figure 2.26. The par-
tial derivative of a 20 tunc-
fion with respect o f must
hold v constant to have a
unique value, as shown by
the dark paint. The hollow
points show other values of
f that do not hold y con-
stant.

Figure 2.27. The vector a
points in a direction where f
has no change and is thus

perpendicular 1o the gradi-
ent vector W I,

a2 2. Miscellaneous Math

The partial derivative is a generalization of the 1D derivative. For a 2D func-
tion f(x, y), we can't take the same limit for r as in Equation 2. 1{), because f can
change in many ways for a given change in . However, if we hold i constant, we
can define an analog of the derivative, called the partial derivative (Figure 2.26):

af _ i fle + Ax,y) = flz,¥)
8z Az—0 Ax ’

Why is it that the partial derivatives of = and y are the components of the gradient
vector? Again, there is more obvious insight in the geometry than in the algebra.
In Figure 2.27, we see the vector a travels along a path where f does not change.
Mote that this is again at a small enough scale that the surface height(x, y) =
flx, y) can be considered locally planar. From the figure, we see that the vector
a = (Ar, Ay).

Because the uphill direction is perpendicular to a, we know the dot product is
egual to zero:

(Vf)-a=(zv,pv) (Ta, ¥a) = ovlr + yvdy = 0. (2.11)
We also know that the change in f in the direction (. v,) equals zero:
af af . _af af
Af = F —= A +ﬁ&y=aiﬂ+ﬁyu—u. (2.12)

Given any vectors (@, y) and (', y') that are perpendicular, we know the angle
between them is 90 degrees, and thus their dot product equals zero (recall that the
dot produoct is proportional to the cosine of the angle between the two vectors).
Thus we have z2' + yy' = (. Given (x,y), it is easy o construct valid vectors
whose dot product with {x, y) equals zero, the two most obvious being (y, —x)
and (—y, r); you can verify that these vectors give the desired zero dot product
with (ir, y). A generalization of this observation is that (z,) is perpendicular to
k(y, —x) where k15 any non-zero constant. This implies that

N 2 4 df)
(Fa:la) =k (&y B) (2.13)
Combining Equations 2.11 and 2.13 gives
af 4a
(zw yv) =K (ﬂ,r‘ ﬂi)

where k' is any non-zero constant. By definition, “uphill” implies a positive
change in f, so we would like &' = 0, and &' = 1 is a perfectly good convention.

2.5. 2D Implicit Curves 33

As an example of the gradient, consider the implicit circle 2 + ¢* — 1 =
() with gradient vector {2z, 2y), indicating that the outside of the circle is the
positive region for the function f{x,y) = =* + y* — 1. Note that the length
of the gradient vector can be different depending on the multiplier in the implicit
equation. For example, the unit circle can be described by Az + Ay* — A = 0 for
any non-zero A. The gradient for this curve is (24x, 24y). This will be normal
{perpendicular) to the circle, but will have a length determined by A. For 4 > (),
the normal will point outward from the circle, and for A < 0, it will point inward.
This switch from outward to inward is as it should be, since the positive region
switches inside the circle. In terms of the height-field view, k = Az® + Ay® — A,
the circle is the zero altitude point. For A = 0, the circle encloses a depression,
and for 4 < 0, the circle encloses a bump, As A becomes more negative, the
bump increases in height, but the i = 0 circle doesn’t change. The direction
of maximum uphill doesn't change, but the slope increases. The length of the
gradient reflects this change in degree of the slope. So intuitively, you can think
of the gradient’s direction as pointing uphill and its magnitude as measuring how
uphill the slope is.

2.5.2 Implicit 2D Lines
The familiar “slope-intercept” form of the line is
y = i + b {2.14)
This can be converted easily to implicit form (Figure 2.28):
fy—mr—b=10, (2.15)

Here e is the “slope” (ratio of rise to run) and b is the y value where the line
crosses the y-axis, usually called the y-intercept . The line also partitions the 2D
plane, but here “inside” and “outside™ might be more intuitively called “over” and
“under.”

Because we can multiply an implicit equation by any constant without chang-
ing the points where it 18 zero, &f{z, y) = 0 15 the same curve for any non-zero
k. This allows several implicit forms for the same line, for example,

24—2mz—2b=10.

One reason the slope-intercept form is sometimes awkward is that it can’t rep-
resent some lines such as & = 0 because m would have to be infinite. For this
reason, 4 more general form is often useful;

Az 4+ By+C =0, (2.16)

il

fixyl=y-mx-b
m = -ty

Figure 2.28. A 20 line can
be described by the equa-
tion y— mx — b=0.

oyl | *
Myl = Ax+ By + C
Vifnyl = (A 8)

Figure 2.29. The gradient
vactor (4,8) |s perpendi-
cular to the implicit line Ax
+By+C=0

34 2. Miscellanegus Math

for real numbers A, B, . Suppose we know two points on the line (@, yo)
and (i, y;). Because these points lie on the line, they must both satisfy Equa-
tion 2, 16:

Arg+ By +C =10,
..‘1.!'1 + Byl + C=10.

Unfortunately we have two equations and rhree unknowns: A, 5. . This prob-
lem arises because of the arbitrary multiplier we can have with an implicit equa-
tion, We could set ¢ = 1 for convenience:

Ar+ By+1=1,

but we have a similar problem to the infinite slope case in slope-intercept form:
lines through the origin will have A(0)) + B(0) + 1 = 0 so A or £ has 1o be
infinite. For example, the equation for a 45 degree line through the origin can be
written = — y = (), or equally well y — 2 = (), oreven 17y — 17z = (), but it
cannot be written in the form Ax + By + 1 =0,

Whenever we have such pesky algebraic problems, try to solve the problems
using geomelric intuition as a guide. One tool we have, as discussed in Sec-
tion 2.5.1, 1% the gradient. For the line Ar + By + €' = (), the gradient vector is
(A,). This vector is perpendicular to the line (Figure 2.29), and points to the
side of the line where Ax + By + €' is positive. Given two points on the line
(i, go) and (g, 4), we know that the vector between them points in the same
direction s the line. This vector is just (&7 —xg. 4 — yo). and because it is paral-
lel to the line, it must also be perpendicular to the gradient vector (4,). Recall
that there are an infinite number of { A, &7, C) that describe the line because of the
arbitrary scaling property of implicits. We want any one of the valid (4, B2,).

We can start with any | A, B) perpendicular to (2 —xp, 44 —y0). Such a vector
15 just (A, B) = (yo — ¥, @1 — @) by the same reasoning as in Section 2.5.1.
This means the equation of the line through (g, py) and (x5) 15

(o —m e+ (zy —xgly+C =10, (217

Now we just need to find C. Because (ay. yo) and [z, ¥) are on the line, they
miust satisfy Equation 2.17. We can plug either in and solve for (7, Doing this for
(n,) vields C = wgiyp — o130, and thus the full equation for the line is

(Wo — 1)+ (&7 — o)y + wotn — it =10, (2.18)

Again, this is one of infinitely many valid implicit equations for the line through
twio points, but this form has no division operation, and thus no numerncally de-
generate cases for points with finite Cartesian coordinates. A nice thing about

2.5, 2D Implicit Curves 35

Equation 2.18 is that we can always convert to slope-intercept form by moving
the non-y terms to the right-hand side of the equation, and dividing by the multi-

plier of the y term:

e

T1ln = T
g el 140 D!ﬂl

L1 — T

£ — Iy
An interesting property of the implicit line equation is that it can be used to find
the signed distance from a point to the line, The value of Ax + By + C is
proportional to the distance from the line (Figure 2.30). As shown in Figure 2.31,
the distance from a point to the line is the length of the vector (A, B), which is

distance = k' A% + B2, (2.19)
For the point (&, y) + k{A, B), the value of f(x,y) = Az + By + Cis
flo+ kA y+ kB) = Az + kA® + By + kB* + C 553

= k(A% + BY).

The simplification in that equation is a result of the fact that we know (&,) is on
the line, so Az + By <+ ' = 0. From Equations 2,19 and 2,20, we can see that
the signed distance from line Ar + By + €' = 0 to a point (a, b) is

fla, h]l__
VAL Be
Here “signed distance” means that its magnitude {absolute value} is the distance,
but it may be positive or negative, On one side of the line, distances are positive,
and on the other they are negative. Note that if (A, H) is a unit vector, then fla, b}

is the signed distance. We can multiply Equation 2.18 by a constant that ensures
(A, B) is a unit vector;

distance =

+ &Iy —ap
=
ViEer—zgP + (v —wn)?
Tolly — &
o — il 2.21)

— =
Vier =z +(w—m)?

Note that evaluating f(x, y) in Equation 2.21 directly gives the signed distance,
but does require a square root to set up the equation. Note also that although dis-
tances on one side of the line are positive, those on the other side of the line are
negative. You can choose between the cquully valid representations fla, y) =0
and — fla,y) = 0 if your problem has some reason to prefer a particular side
being positive, This will turn oul to be very useful for triangle rasterization (Sec-
tion 3.6). Other forms for 2D lines are discussed in Chapter 14

o — o
Vi —a0)? + (b — 1)?
KE

flz,y) =

AT @]
flxy)=Ax+ By + C

Figure 230. Tha value
of the implicit function fix.y)
= Ax + By + C Is & con-
alant times the signed dis-
tance from Ax + By +C = [,

sl + K(A.B)

fixyl=Ax + By + C

Figure 2.31. The vec-
tor k{4,B8} connacts a point
fx,y) on the line closest to
a point not on the line.
The distance is proportional
o k-

Figure 232. The ellipse
with center (x. .} and
semi-axes of length &
and b.

38 2. Miscellaneous Math

253 Implicit Quadric Curves

For 2D quadric curves, i.e., ellipses and parabolas, as well as the special cases of
hyperbolas, circles, and lines, we have the general implicit form:

Az + Bey +Cy* + Dr+ Ey+ F = 0.
The equation for the circle with center (., 1.) and radius r is
=z + (y—) =" =0
Equations for parabolas include
y—k(x—z.)% =0,

where k& is a non-zero constant and x. is the axis of symmetry for the parabola.
There is an analogous form for parabolas with horizontal axes of symmetry. The
equation for an axis-aligned ellipse is

{3;_1-(}2 {y_yc}z
a® i b2
where (x.,y.) is the center of the ellipse, and @ and b are the minor and major
semi-axes (Figure 2.32).

l=1,

2.6 2D Parametric Curves

A parametric curve is controlled by a single parameter that can be considered a
sort of index that moves continuously along the curve. Such curves have the form

] = [260]-

Here (&, ¥} is 4 point on the curve, and ¢ is the parameter that influences the curve,
For a given ¢, there will be some point determined by the functions g and fi. For
continuous g and h, a small change in ¢ will yield a small change in = and y.
Thus, as t continuously changes, points are swept out in a continuous curve, This
is a nice feature because we can use the parameter ¢ to explicitly construct points
on the curve, Often we can write a parametric curve in vector form:

p = f(f),

where f is a vector valued function: f : R — R®. Such vector functions can
generate very clean code, so they should be used when possible. Note that we

2.6. 2D Parametric Curves a7

can think of the curve with a position as a function of time. The curve can go
anywhere and could loop and cross itself. We can also think of the curve as
having a velocity at any point, For example, the point p(t) is travelling slowly
near t = —2 and quickly between ¢ = 2 and # = 3. This type of “moving point™
vocabulary is often used when discussing parametric curves even when the curve
is not describing a moving point.

2.6.1 2D Parametric Lines

A parametric line in 2D that passes through points p; = (#g,w0) and p; =
{ry, 1) can be writien

z| _ [wo+t{x1 - ;r.;.]l}

] o+t — o) |

Because the formulas for = and y have such similar structure, we can use the
vector form for p = (&, y) (Figure 2.33):

p(t) = py + tipy — Pa)-

You can read this in geometric form as: “start at point p, and go some distance
toward p, determined by the parameter £." A nice feature of this form is that
p(0) = p, and p(1) = p,. Since the point changes linearly with ¢, the value of
t between p, and p, measures the fractional distance between the points, Points
with ¢ < 0 are to the “far" side of p,. and points with # > 1 are to the “far” side
of p;.

Parametric lines can also be described as just a point o and a vector d:

p(t) = o + t(d).

When the vector d has unit length, the line is arc-length parameterized. This
means t 15 an exact measure of distance along the line, Any parametric curve can
be arc-length parameterized, which is obviously a very convenient form, but not
all can be converted analytically.

2.6.2 2D Parametric Circles

A circle with center (z.., i) and radius r has a parametric form:

x| _ |zt reosg
| |yetrsing|’

il

Figure 2.33. A 2D para-
matric line through pg and
py. The line segment de-
fined by t £ [0,1] is shown
in bold,

a8 2. Miscellaneous Math

To ensure that there is a unique parameter o for every point on the curve, we can
restrict its domain: ¢ € [(. 27} or ¢ € (—=, 7| or any other half open interval of
length 2x.

An axis-aligned ellipse can be constructed by scaling the & and g parametric

equations separately:
r| _ |X.+ acosg
Yl | ye+bsing |’

2.7 3D Implicit Surfaces
Implicit equations implicit!y define a set of points that are on the surface
e w21 =0.

Any point (@, 1, =) that is on the surface returns zero when given as an argument
o f. Any point not on the surface returns some number other than zero. This is
called implicit rather than explicit because you can check whether a point is on
the surface by evaluating f, but you cannot always explicitly construct a set of
points on the surface. As a convenient shorthand, T will write such functions of
p={x.y z)as

fip) = 0.

2.71 Surface Normal to an Implicit Surface

A surface normal, which is needed for lighting computations, is a vector perpen-
dicular to the surface. Each point on the surface may have a different normal
vector. The surface normal at the intersection point p is given by the gradient of
the implicit function

dfip) df(p) af(p)
=V = . = .
n=vj(p) = (252, 20P) O/
The gradient vector may point “into” the surface or may point “out” from the
surface. If the particular form of [creates inward facing gradients and outward
Facing gradients are desired, the surface — f(p) = (0 is the same as surface f(p) =
0 but has directionally reversed gradients, i.e.. Vf(p) = - V{-f(p)).

2.7.2 Implicit Planes

As an example, consider the infinite plane through point a with surface normal n,
The implicit equation to describe this plane is given by

(p—a)-n=0. (2.22)

2.7. 3D Implicit Surfaces 39

Note that a and n are known quantities. The point p is any unknown point that
satisfies the equation. In geometric terms this equation says “the vector from a 10
p is perpendicular to the plane normal.” If p were not in the plane, then (p —a|
would not make a right angle with n (Figure 2.34).

Sometimes we want the implicit equation for a plane through points a, b,
and ¢, The normal to this plane can be found by taking the cross product of any
two vectors in the plane. One such cross product is

n=(b-a)=(ec—a)
This allows us to write the implicit plane equation:
(p—a) ((b-a)x(c—a))=0.

A geometric way to read this equation is that the volume of the parallelepiped
defined by p — a, b — a, and ¢ — a is zero, i.e., they are coplanar. This can
only be true if p is in the same plane as a, b, and e. The full-blown Cartesian
representation for this is given by the determinant (this is discussed in more detail
in Section 5.2.3):

@ =Ty Y —Ya B —

Ty—%a W—Va Zd—Zul=0 (2.23)

To—Wg MYe—Ha Fe— 3
The determinant can be expanded (see Section 5.2.3 for the mechanics of expand-
ing determinants) to the bloated form with many terms.

Equations 2.22 and 2.23 are equivalent, and comparing them is instructive,
Equation 2.22 is easy to interpret geometrically and will yield efficient code. In
addition, it is relatively easy to avoid a typographic error that compiles into in-
correct code 1f it takes advantage of debugged cross and dot product code. Equa-
tion 2.23 is also easy to interpret geometrically and will be efficient provided an
efficient 3 by 3 determinant function is implemented. It is also easy to imple-
ment without a typo provided a call of the type determinani{a, b, ¢) exists. It
will be especially easy for others to read your code if you rename the determinant
function velume, So both Equations 2,22 and 2.23 map well into code. The full
expansion of either equation is likely to generate typos. Such typos are likely to
compile, and thus be especially pesky. This is an excellent example of clean math
generating clean code, and bloated math generating bloated code.

2.7.3 3D Curves from Implicit Surfaces

One might hope that an implicit 3D curve could be created with the form f(p) =
i). However, all such curves are just degenerate surfaces and are rarely useful in

ili

Figure 2.34. Any of the
points p shown are in the
plane with npormal vector
n that includes point a if
Equation 2.22 is satisfied,

40 2. Miscellaneous Math

practice. 3D curves can be constructed from the intersection of two simultaneous
implicit equations:

fip) =10,
g(p) = 0.

For example. a 3D line can be formed from the intersection of two implicit planes.
Typically, it is more convenient to use 3D parametric curves, which are straight-
forward extensions of 2D parametric curves,

2.8 3D Parametric Curves

A 3D parametric curve operates much like a 21 parametric curve;

x = f(t),
y = g(t),
z = hit).

For example. a spiral around the z-axis is:

a = cost,
y=gsint,
r=1

In this chapter we only discuss 3D parameiric lines in detail. General 3D para-
metric curves are discussed more extensively in Chapter 15,
2.8.1 3D Parametric Lines

A 3D parametric line can be written as a straightforward extension of the 2D
parametric line, e.g.,

r=24Tt,
y=1+4+2¢
z=23—5

This is cumbersome and does not translate well to code variables, so we will write
it in vector form:
p=o+1id,

2.9, 3D Parametric Surfaces 41

where, for this example, o and d are given by
o={21 3}
d=(7,2-5).

Note that this is very similar to the 2D case. The way to visualize this is to
imagine that the line passes though o and is parallel to d. Given any value of ¢,
you get some point p(t) on the line. For example, at ¢ = 2, p(t) = (2,1,3) +
2(7,2,—5) = (16,5, —T). This general concept is the same as for two dimensions
(Figure 2.30).

As in 20, 4 line segment can be described by a 30 parametric line and an
interval £ € [t,.t,). The line segment between two points a and b is given by
p(t) = a+t(b —a) with t € [0,1]. Here p(0) = a, p(1) = b, and p(0.5) =
(a+b)/2, the midpoint between a and b,

A ray, or half-line, is a 3D parametric line with a half-open interval, usu-
ally [0, 2c). From now on we will refer to all lines, line segments, and rays
as “rays.” This is sloppy, but corresponds to common usage, and makes the
discussion simpler.

2.9 3D Parametric Surfaces

Another way to specify 3D surfaces (surfaces in 3D space) 18 with 2D paramerers,
These surfaces have the form:

x = flu, v},
¥ = g{u,v),
z = hiw,v).

2.9.1 Parametric Spheres

A point on the surface of the earth is given by the two parameters, longitude and
latitude. For example, if we put a polar coordinate system on a radius r sphere
with center at the origin (Figure 2.35), we get the parametric equations
z=rcospsind,
y = rsin¢sin f, (2.24)
z=rcosd.
ldeally, we'd like to write this in vector form, but it isn't feasible for this particular
parametric form. This use of # and @ may or may not be backwards depending

¥y
= =

()
X

Figure 2.35. The ge-
ometry for spherical coordi-
nates.

42 2. Miscallaneous Math

upon the reader’s background. Unfortunately there is no standard for which angle
uses which symbol across disciplines. Anyone who dismisses the importance of
such standards should try to manipulate an equation of the form bA = x where
b is a square matrix and the other variables are column vectors, rather than the
usual Ax = b. The more familiar they are with linear algebra, the worse their
confusion will be. In graphics, we will always assume the meaning of # and ¢
given in Equation 2.24, We will return to this equation when we texture map a
sphere.

We would also like to be able to find the (#, @) for a given [z, y, 2). If we
assume that ¢ € {—m, =] this is easy to do vsing the atan2 function from Equa-
tion 2.2:

= acos(z//x? + 42 + 27,

{2.25)
¢ = atan2(y,).

2.10 Linear Interpolation

Perhaps the most common mathematical operation in graphics is linear interpo-
lation . We have already seen an example of linear interpolation of position to
form line segments in 2D and 3D, where two points a and b are associated with
a parameter ¢ 1o form the line p = (1 — i)a + tb. This is interpolation because p
goes through a and b exactly at £ = Oand { = 1. [t is linear interpolation because
the weighting terms t and 1 — ¢ are linear polynomials of .

Another common linear interpolation is among a set of positions on the x-
axis; xp, 1, . . ., Ty, and for each x; we have an associated height, 3. We want to
create a continuous function y = f(x) that interpolates these positions, so that f
goes through every data point, i.e., f{x;) = y;. For linear interpolation, the points
{x. 1) are connected by straight line segments. It is natural to use parametric
line equations for these segments. The parameter ¢ is just the fractional distance
between x; and x; . ;:

flx) =y + i—_ﬂ;‘{mﬂ - ¥i). (2.26)
Because the weighting functions are linear polynomials of =, this is linear inter-
polation.

The two examples above have the common form of linear interpolation. Cre-
ate a variable ¢ that varies from 0 to | as we move from data item A to data item B.
Intermediate values are just the function (1 —¢)4 4t 5. Notice that Equation 2.26
has this form with —

= ———
Ti+1 — &y

2.11. Triangles 43

2.11 Triangles

Triangles in both 2D and 3D are the fundamental modeling primitive in many
graphics programs. Often information such as color is tagged onto triangle ver-
tices, and this information is interpolated across the triangle. The coordinate sys-
tem that makes such interpolation straightforward is called barveentric coordi-
nates, and we will develop these from scratch, We will also discuss 2D triangles,
which must be undersiood before we can draw their pictures on 2D screens.

2.11.1 2D Triangles

If we have a 2D triangle defined by 2D points a, b, and ¢, we can first find its
area:

area:l Ty —Ta Te—Ta
21— Ya Ye—Ua (227

= % (Zaly + Tole + Tella — Lalle — Tola — Telfs) -
The derivation of this formula can be found in Section 5.2.3. This area will have a
positive sign if the points a, b, and ¢ are in counterclockwise order, and a negative
sign, otherwise.

Often in graphics, we wish to assign a property, such as color, at each trian-
gle vertex and smoothly interpolate the value of that properiy across the triangle.
There are a variety of ways to do this, but the simplest is 10 use baryvcentric co-
ordinates. One way to think of barycentric coordinates is as a non-orthogonal
coordinate system as was discussed briefly in Section 2.4.2. Such a coordinate
system is shown in Figure 2.36, where the coordinate origin is a and the vectors
from a to b and c are the basis vectors. With that origin and those basis vectors,
any point p can be written:

p=a+3(b-a)+vy(c—a) (2.28)
MNote that we can reorder the terms in Equation 2.28 o get
p=(l-3—=)a+ b+ e
Often people define a new variable o to improve the symmetry of the equations:
a=1- G-,
which yields the equation

pla. 4, 7] = aa+ b+ e, (2.29)

44 2. Miscelianeous Math

0 S

Flgure 2.36. A 2D iriangle with vertices a, b, ¢ can be used to set up a non-arthogonal
coordingte system with origin @ and basis vectors (b - &) and (g - &). A point is then
represented by an ordered pair (7, +). For example, the point p = (2.0, 0.5), e, p=a
+ 2.0 (b-a) + 0.5 (c- a).

with the constraint that
a+f+7=1 (2.30)

Barycentric coordinates seem like an abstract and unintuitive construct at first,
but they turn out to be powerful and convenient. You may find it useful to think
of how street addresses would work in a city where there were two sets of parallel
streets, but where those sets were not at right angles. The natural system would
essentially be barycentric coordinates, and you would guickly get used to them,
Barycentric coordinates are defined for all points on the plane. A particularly nice
feature of baryceniric coordinates is that a point p is inside the triangle formed by
a, b, and ¢ if and only if

O<e<l,
0<g<l,
0<= <1.

If one of the coordinates is zero and the other two are between zero and one, then
you are on an edge. If two are zero, then the other is one, and you are at a vertex.
Another nice property of barycentric coordinates is that Equation 2.29 in effect
mixes the the coordinates of the three vertices in a smooth way. The same mixing
coefficients («, 3,) can be used to mix other properties, such as color, as we will
see in the next chapter.

Given a point p, how do we compute its barycentric coordinates? One way is
to write Equation 2,28 as a linear system with unknowns 7 and +, solve, and set

.,

211, Triangles 45

o = 1 — 3 — =, That linear system 15

Tp— Ty .r,_ - .1:.,] [ﬂ] [:-* - rn:|

Wb — Ya p —
Although it is straightforward to solve Equation 2.31 algebraically, it is often
fruitful to compute a direct geometric solution.

One geometric property of barycentric coordinates is that they are the signed
scaled distance from the lines through the triangle sides, as is shown for 3 in
Figure 2.37, Recall from Section 2.5.2 that evaluating the equation f(x, y) for the
line flx,y) = 0 returns the scaled signed distance from (z, y) to the line. Also
recall that if f{x,) = 0 is the equation for a particular line, so is kf(z.y) = 0
for any non-zero k. Changing & scales the distance and controls which side of the
line has positive signed distance, and which negative. We would like to choose
k such that, for example, kf(x, y) = 4. Since k is only one unknown, we can
force this with one constraint, namely that at point b we know 3 = 1. Soif the
line fo-(x,y) = 0 goes through both a and ¢, then we can compute 7 for a point
(=, u) as follows:

(2.31)

_ _faclz,p)
faclzn,)’
and we can compute v and o in a similar fashion. For efficiency, it is usually wise
to compute only two of the barycentric coordinates directly and to compute the
third using Equation 2.30,
To find this “ideal” form for the line through py, and p,, we can first use the
technique of Section 2.5.2 to find some valid implicit lines through the vertices,
Equation 2.18 gives us

(2.32)

fao(2,4) = (Yo — W) + (2p = Ta)Y + Talis = Toya = 0.

Note that fuu(xe, 4-) probably does not equal one, so it is probably not the ideal
form we seek. By dividing through by fou(z.. u.) we get

_ Mya —w)r + (25 — Ta)y + Talth — Tha
(¥a = ¥8)Te + (Th — Ta)Ve + Talls — Tola

The presence of the division might worry us because it introduces the possibility
of divide-by-zero, but this cannot occur for triangles with areas that are not near
zero. There are analogous formulas for o and 3, but typically only one is needed:

[ya — .f;l':'}-rf: s I{'Jf-:' = ;r:“}y + Talle — Lelln
(%a =)2 + (Tc = Ta)Ub + TaYe = Tela
a=1—3—".

B=

Figure 2.37. The bary-
cenfric coordinate J is the
signed scaled distance
from the line through a
and e.

Figure 2.38. The bary-
centric coordinates are pro-
portional to the areas of the
three subtriangles shown.

Figure 2.39. The area of
the two triangies shown is
base times height and are
thus the same, as is any ri-
angle with a vertex on the
3 = 0.5 line. Tha height
and thus the area is propor-
tional to 3.

Figura 2.40. The nor-
mal vector of the triangle is
parpendicular o all vectors
in the plane of the triangle,
and thus perpendicular to
the edges of the triangle.

46 2. Miscellansous Math

Another way to compute barycentric coordinates is to compute the areas A,, As,
and A., of subiriangles as shown in Figure 2.38. Barycentric coordinates obey
the rule

o= A4,/4,
3= Ai/A, (2.33)
= AJ:.IJIA1

where A is the area of the triangle. Note that A = A, + Ay + A, 50 it can be
computed with two additions rather than a full area formula. This rule still holds
for points outside the triangle if the areas are allowed to be signed. The reason
for this is shown in Figure 2.39. Note that these are signed areas and will be
computed correctly as long as the same signed area computation is used for both
A and the subtriangles 4,, A, and A,

2.11.2 3D Triangles

One wonderful thing about barycentric coordinates is that they extend almost
transparently to 3D. If we assume the points a, b, and c are 3D, then we can
still use the representation

p=(l-8—-va+ b4 ye.

Now, as we vary [and v, we sweep out a plane.

The normal vector to a triangle can be found by taking the cross product of
any two vectors in the plane of the triangle (Figure 2.40), It is easiest to use two
of the three edges as these vectors, for example,

n=(b-a)x(c—a) (2.34)

Note that this normal vector is not necessarily of unit length, and it obeys the
right-hand rule of cross products,
The area of the triangle can be found by taking the length of the cross product:

area = 2 |(b ~ a) x (c ~a)]. (239)

Note that this is nor a signed area, so it cannot be used directly to evaluate
barycentric coordinates. However, we can observe that a triangle with a “clock-
wise" vertex order will have a normal vector that points in the opposite direction
to the normal of a triangle in the same plane with a “counterclockwise™ vertex
order. Recall that

a-b = [al ||b|| cosd,

2.11. Triangles 47

where ¢ is the angle between the vectors. If a and b are parallel, then cos g = +1,
and this gives a test of whether the vectors point in the same or opposite directions.
This, along with Equations 2.33, 2.34, and 2.35 suggest the formulas:

o= -1,
[|mf?
n-:ng,

fi:= =
f|m]|*

. n-n,
[ni?

where n is Equation 2.34 evaluated with vertices a, b, and ¢; n,, is Equation 2.34
evaluated with vertices b, ¢, and p, and so on, i.e.,

n, = (c—b) x (p—b),
ny = (a—¢) x (p—e), (2.36)
n.=(b—a)x(p—a)

Frequently Asked Questions
s Why isn't there vector division?

It turns out that there is no “nice” analogy of division for vectors. However, it
is possible to motivate the quaternions by examining this questions in detail (see
Hoffman's book referenced in the chapter notes).

» |s there something as clean as barycentric coordinates for polygons with
more than three sides?

Unfortunately there is not. Even convex quadrilaterals are much more compli-
cated. This is one reason triangles are such a common geometric primitive in

graphics.

» |5 there an implicit form for 3D lines?

Mo. However, the intersection of two 3D planes defines a 3D line, so a 3D line
can be described by two simultaneous implicit 3D equations.

48 2. Miscellaneous Math

Notes

The history of vector analysis is particularly interesting. It was largely invented
by Grassman in the mid-1800s but was ignored and reinvented later (Crowe,
1994). Grassman now has a following in the graphics field of researchers whao
are developing Geometric Algebra based on some of his ideas (Doran & Lasenby,
2003). Readers interested in why the particular scaler and vector products are
in some sense the right ones, and why we do not have a commonly-used vector
division, will find enlightenment in the concise Abowr Vecrors (Hoffmann, 1975).
Another important geometric tool 15 the guaternion invented by Hamilton in the
mid- 18005, Quaternions are useful in many situations, but especially where ori-
entations are concerned (Hanson, 2005).

Exercises

1. The cardinality of a set is the number of elements it contains. Under IEEE
floating point representation (Section 1.6}, what is the cardinality of the
Sfloars?

2. Is it possible to implement a function that maps 32-bit integers to 64-bit in-
tegers that has a well defined inverse? Do all functions from 32-bit integers
to 64-bit integers have well defined inverses?

3. Specify the unit cube (z, i, and z coordinates all between 0 and 1 inclusive)
in terms of the Cartesian product of three intervals.

4. If you have access to the natural log function In{z), specify how you could
use it to implement a log(b,) function where b is the base of the log. What
should the function do for negative b values? Assume an IEEE floating
point implementation.

5. Solve the guadratic equation 4z — Gz +9=0.

6. Implement a function that takes in coefficients A, B, and (7 for the quadratic
equation Ar? + By + € = [} and computes the two solutions. Have the
function return the number of valid (not NaN) solutions and fill in the return
arguments so the smaller of the two solutions is first.

7. Show by counterexample that it is not always true that for 3D vectors a, b,
ande,ax (bxe)l=(axb)xe

2.11.

1.

12

13.

Triangles 49

. Given the non-parallel 3D vectors a and b, compute a right-handed or-

thonormal basis such that u is parallel to a and v is in the the plane defined
by a and b.

. What is the gradient of f(zx,y,2) = #* + y — 3277

. What is a parametric form for the axis-aligned 2D ellipse?

What is the implicit equation of the plane through 3D points (1,0, 0}, (0,1, 0),
and (0,0, 1}7 What is the parametric equation? What is the normal vector
to this plane?

Given four 2D points a5, a;, by, and by, design a robust procedure o
determine whether the line segments aga; and byb, intersect.

Design a robust procedure to compute the barycentric coordinates of a 2D
point with respect to three 2D non-collinear points.

3

Raster Algorithms

Most computer graphics images are presented to the user on a rasfer display. Such
sysiems show images as rectangular arrays of pixvels, which is short for “picture
elements.” These pixels are set using RGB (red-green-blue) color. In this chapter,
we discuss the basics of raster displays, emphasizing the RGB color system and
the non-linearities of standard image display.

3.1 Raster Displays

There are a variety of display technologies for desktop and projected display.
These displays vary in reselution (the number of pixels) and physical size. Pro-
grammers can usually assume that the pixels are laid out in a rectangular array,
also called a rasrer.

3.1.1 Pixels

Each displayable element in a raster display is called a pixel. Displays usually
index pixels by an ordered pair (i, j) indicating the row and column of the pixel.
If a display has 1. columns and n,, rows of pixels, the bottom-left element is pixel
{0, 0) and the top-right is pixel (n, — 1,n, —1).!

' many APl the rows of an Image will be addressed in the less intuitive manner from the top-to-
bottam, so the top-left pixel has coordinates (0, 0). This convention is common for historical reasons:
it is the order that rows come in a standard television transmission,

51

52 3. Raster Algorithms

ty
=25
Poa| © = ':}3,2)
@ o o o
{0.1)
R o S —
(0.0) o) 2.0 {3.00
y=-0.5
x=-0.5 ¥=3.5

Figure 3.1. Coordinates of a four pixel by three pixel screen. Mote that in some APls the
y-axis will point downwards.

We need 2D real screen coordinates to specify pixel positions. The details of
such systems vary among APls, but the most common is to use the integer lattice
for pixel centers, as shown by the 4 by 3 screen in Figure 3.1. Because pixels have
finite extent, note the (1.5 unit overshoot from the pixel centers.

Physical pixels, i.e., the actual displayed elements in hardware, will vary in
shape from system to system. In CRTs (cathode ray tubes), the pixel is associated
with a patch of phosphor in the CRT, and this phosphor glows based on how much
an electron beam stimulates the phosphor. The shape of the pixel depends both
on the details of how the electron beam sweeps the pixel, as well as the details of
how the phosphor is distributed in the monitor. As a first approximation, we can
assume the phosphor will have a “blobby™ shape on the screen, with the highest
intensity in the center and a gradual falloff toward the sides of the pixel. On an
LCD (liguid crystal display) system, the pixels are approximately square filters
which vary their opacity to darken a backlight. These pixels are almost perfect
squares, and there is a small gap between squares to allow the control circuitry
to get (o the pixels. Most display systems other than CRTs or LCDs will behave
somewhat like these two, with either blobby or square pixels.

3.2 Monitor Intensities and Gamma

All modern monitors take digital input for the “value” of a pixel and convert this
to an intensity level., Real monitors have some non-zero intensity when they are

3.2, Monitor Intensities and Gamma 53

off because the screen reflects some light. For our purposes we can consider this
“black™ and the monitor fully on as “white" We assume a numeric description
of pixel color that ranges from zero to one. Black is zero, white is one, and a
grey halfway between black and white is 0.5. Note that here “halfway™ refers to
the physical amount of light coming from the pixel, rather than the appearance.
The human perception of intensity is non-linear and will not be part of the present
discussion,

There are two key issues that muost be understood to produce images on mon-
itors. The first is that monitors are non-linear with respect to input. For example,
if you give a monitor 0, 0.5, and 1.0 as inputs for three pixels, the intensities dis-
played might be 0, 0.25, and 1.0 (i.e.. zero, one-gquarter fully on, and fully on),
As an approximate characterization of this non-linearity, most monitors are char-
acterized by a < (“gamma") value. This value is the degree of freedom in the
formula

displayed intensity = [maximum intensity ja”, (3.1)

where a is the input intensity between zero and one. For example, if a monitor has
a gamma of 2.0, and we input a value of o = (1.5, the displayed intensity will be
one fourth the maximum possible intensity because 0.5° = 0.2, Note thata = 0
maps to zero intensity and & = 1 maps to the maximum intensity regardless of
the value of +. Describing a display’s non-linearity using ~ is just a first-order
approximation; we do not need a great deal of accuracy in estimating the v of a
device. A nice visual way to gauge the non-linearity is to find what value of a
gives an intensity halfway between black and white. This a will be

k5 =aT;

If we can find that a, we can deduce < by taking logs of both sides which yields

_ In0s
= e

We can find this a by a standard technigue where we display a checkerboard
pattern of black and white pixels next to a square of grey pixels with input a (Fig-
ure 3.2). When you look at this image from a distance (or without glasses if you
are nearsighted), the two sides of the image will look about the same when a is
halfway between black and white. This is because the blurred checkerboard is
mixing even numbers of white and black pixels so the overall effect is a uniform
color halfway between white and black. To make this work, we must be able to trv
many values for a until one matches. This can be done by giving the user a slider
to control a, or by using many different gray squares simultaneously against a

black/white pixels
pivels

Figure 3.2. Alternat-
ing black and white pixels
viewed from a distance are
halfway between black and
white. The gamma of a
monitor can be inferred by
finding & grey value that
appears o have the zame
intensity as the black and
white pattern.

54 3. Raster Algorithms

large checkered region. Note that for CRTs, which have difficulty rapidly chang-
ing intensity along the horizontal direction, horizontal black and white stripes will
work better than a checkerboard. This basic luminance matching strategy can be
made more precise by taking advantage of hurman face recognition ability (Kindl-
mann, Reinhard, & Creem, 2002).

Once we know -y, we can gamma correct our input so that a value of a = 0.5
is displayed with intensity halfway between black and white. This is done with
the transformation

1
a=a".

When this formula is plugged into Equation 3.1 we get
T
displayed intensity = (a #) (maximum intensity)
= afmaximum intensity).

Another important characteristic of real displays is that they usvally take quan-
tized input values. So while we can manipulate intensities in the floating point
range [0, 1], the detailed input to a monitor is usually a fixed-size non-negative
integer. The most common range for this integer is 0-255 which can be held in 8
bits of storage. This means that the possible values for a are not any number in
0, 1] but instead

0 1 2 254 255 }

ssiblevialues ford =4 — ==, ===y v 1=+
o 2 {255 D55' 255" "' 255" 255

This means the possible displayed intensity values are approximately

0y [Y 2 \7 254" 25547
M M=) M=) A U M ,
{ (255) - (255) *‘f(m) (255) : (255) }

where MM is the maximum intensity. In applications where the exact intensities
need to be controlled, we would have to actually measure the 256 possible inten-
sities, and these intensities might be different at different points on the screen,
especially for CRTs. They might also vary with viewing angle. Fortunately few
applications require such accurate calibration.

3.3 RGB Color

Most computer graphics images are defined in terms of red-green-blue (RGB)
color. RGB color is a simple space that allows straightforward conversion to
the controls for most computer screens. In this section RGB color is discussed

3.3. RGB Coilor 55

from u uset’s perspective, and operational facility is the goal. A more thorough
discussion of color is given in Chapter 20, but the mechanics of RGB color space
will allow us to write most graphics programs. The basic idea of RGB color
space is that the color is displayed by mixing three primary lights: one red, one
green, and one blue. The lights mix in an addirive manner. Additive color mixing
is fundamentally different from the more familiar subtractive color mixing that
governs the mixing of paints and crayons. In those familiar media, red, yellow,
and blue are the primaries, and they mix in familiar ways, such as yellow mixed
with blue is green. In RGB additive color mixing we have (Figure 3.3):

red 4 green = yellow
green + blue = cyan
blue + red = magenta
red + green + blue = white.

The color “cyan” 1s a blue-green, and the color “magenta” is a purple.

If we are allowed to dim the primary lights from fully off to fully on, we can
create all the colors that can be displayed on an RGB monitor. By convention,
we write a color as the fraction of “fully on” it is for each monitor. This creates
a three-dimensional RGE color cube that has a red, a green, and a blue axis.
Allowable coordinates for the axes range from zero to one. The color cube is
shown graphically in Figure 3.4.

The RGEB coordinates of familiar colors are:

black = (0,0.0)

red = (1,0,0)
green = (0, 1, 0)
blue = (0,0, 1)

vellow = (1,1,0)
magenta = {1,0.1}
cyan = (0. 1,1}
white = (1,1, 1).

Actual RGB levels are often given in quantized form, just like the pgreyscales
discussed in Section 3.2. Each component is specified with an integer. The most
common size for these integers is one byte each, so each of the three RGB com-
ponents is an integer between () and 255, The three integers together take up three
bytes, which is 24 bits. Thus a system that has “24 bit color” has 256 possible
levels for each of the three primary colors, Issues of gamma correction discussed
in Section 3.2 also apply to each RGB component separately.

Figure 3.3. The addi-
tive mixing rules for colors
redgreenlue.

56 3. Raster Algorithms

{D,i,1¥_'_{1.1.‘f]'

1,0, 1,1) (01,1 g4 (1,100 (0

I‘:..L
= binl

b (0,00 T 1,01

{1,100

o (10,1)

Figure 3.4. The RGE color cube In 30 and its faces unfolded. Any RGB color is & point in
the cube. (See also Plate 1)

3.4 The Alpha Channel

Often we would like to only partially overwrite the contents of a pixel. A common
example of this occurs in compositing, where we have a background and want to
insert a foreground image over it. For opague pixels in the foreground, we just
replace the background pixel. For entirely transparent foreground pixels, we do
not change the background pixel. For partially transparent pixels, some care must
be taken. Partially transparent pixels can occur when the foreground object has
partially transparent regions such as glass, or when there are sub-pixel holes in

background RGB foreground RGB o channel

Figure 3.5. An example of compositing using Equation 3.2, The foreground Image Is in
effect cropped by the o channel before being put on top of the background image. The
resultling composite (s shown on the bottom.

3.5. Line Drawing 57

the foreground object such as in the leaves of a distant tree. To blend foreground
and background in the case of holes, we want to measure the fraction of the pixel
that should be foreground. We can call this fraction ¢v. If we want 1o composite
a foreground color ¢; over background color ¢, and the fraction of the pixel
covered by foreground is cv, then we can use the formula

¢ =acy + (1 — ajep. (3.2)

An example of using Equation 3.2 is shown in Figure 3.5. Note that the « image
might be stored with the RGB image, or it might be stored as a separate greyscale
(single channel) image.

Although Equation 3.2 is what is usually used, there are a variety of situations
where e is used differently (Porter & Duff, 1984),

3.5 Line Drawing

Most graphics packages contain a line drawing command that takes two endpoints
in screen coodinates (Figure 3.1) and draws a line between them. For example,
the call for endpoints (1.1) and (3,2) would wrn on pixels (1,1) and (3,2} and fill
in one pixel between them. For general screen coordinate endpoints (g, yy) and
[y, y1)}, the routing should draw some “reasonable” set of pixels that approximate
a line between them. The values xg, i1, yo. vy are ofien restricted to be integers
{pixel centers) for simplicity, and because the lines themselves are coarse enough
entities that subpixel accuracy is not appropriate. If you are implementing an API
which calls for real number endpoint coordinates, rounding them to the nearest
integer is usually a reasonable strategy that application programmers are unlikely
to notice. Because the endpoint coordinates are integers, care should be taken to
understand implicit conversions when these integers interact with floating point
variables. Drawing such lines is based on line equations, and we have two types
of equations to choose from: implicit and parametric. This section describes the
two algorithms that result from these two types of equations.

3.5.1 Line Drawing Using Implicit Line Equations

The most common way to draw lines using implicit equations is the midpoint al-
gorithm (Pitteway (1967); Van Aken and Novak (1985)). The midpoint algorithm
ends up drawing the same lines as the Bresenham algorithm (Bresenham, 1965)
but is somewhat more straightforward.

Flgure 3.6. Thrae
“reasonable” lines that go
saven pixels horizontally
and three pixels vertically.

58 3. Raster Algorithms

The first thing to do is find the implicit equation for the line as discussed in
Section 2.5.2:
flz,y) = (yo — mi)x + (21 — zo)y + 2oy — 1o = 0. (3.3)
We assume that zy < xy. If that is not true, we swap the points so that it is true.
The slope i of the line is given by
= o _
I —Ig

m =

The following discussion assumes m & (0,1]. Analogous discussions can be
derived for m € (~o0,~1], m € (—1,0], and m € (1, 5c). The four cases cover
all possibilities.

For the case m & {0, 1], there is more “run” than “rise”, i.e., the line is moving
faster in o than in y. If we have an APl where the y-axis points downwards,
we might have a concern about whether this makes the process harder, but, in
fact, we can ignore that detail. We can ignore the geometnc notions of “up”
and “down.” because the algebra is exactly the same for the two cases. Cautious
readers can confirm that the resulting algorithm works for the y-axis downwards
case. The key assumption of the midpoint algorithm is that we draw the thinnest
line possible that has no gaps. A diagonal connection between two pixels is not
considered a gap.

As the line progresses from the left endpoint to the right, there are only two
possibilities: draw a pixel at the same height as the pixel drawn to its left, or draw
a pixel one higher. There will always be exactly one pixel in each column of pixels
between the endpoints, Zero would imply a gap, and two would be too thick a line,
There may be two pixels in the same row for the case we are considering; the line
is more horizontal than vertical so sometimes it will go right, and sometimes up.
This concept is shown in Figure 3.6, where three “reasonable” lines are shown,
each advancing more in the horizontal direction than in the vertical direction,

The midpoint algorithm for m & (0, 1] first establishes the leftmost pixel and
the column number (x-value) of the rightmost pixel and then loops horizontally
establishing the row (y-value} of each pixel. The basic form of the algorithm is:

y=1in
for v = xgto x; do
draw(z, y)
if (some condition) then
y=y+1

Note that = and y are integers. In words this says, “keep drawing pixels from left
to right and sometimes move upwards in the y-direction while doing so.” The key
is to establish efficient ways to make the decision in the if statement,

-

3.5. Line Drawing 54

An effective way to make the choice is to look at the midpaint of the line
between the two potential pixel centers. More specifically, the pixel just drawn
is pixel (x.y) whose center in real screen coordinates is at (x, y). The candidate
pixels to be drawn to the right are pixels (r+1, y) and (& +1, y+1).The midpoint
between the centers of the two candidate pixels is (& + 1,y + 0.5). If the line
passes below this midpoint we draw the bottom pixel, and otherwise we draw the
top pixel (Figure 3.7).

To decide whether the line passes above or below [+ 1, y +0.5), we evaluate
flx,y + 0.5) in Equation 3.3, Recall from Section 2.5 that f(x,y) = 0 for
points (z,y) on the line, f(x,y) > 0 for points on one side of the line, and
Sflz,u) < 0 for points on the other side of the line. Because —f({x,y) = 0 and
flx,) = 0 are both perfectly good equations for the line, it is not immediately
clear whether fix,y) being positive indicates that (x,y) is above the line, or
whether it is below. However, we can figure it out; the key term in Equation 3.3 is
the y term (:ry —xp)y. Note that (23 — xp) is definitely positive because ry > xq.
This means that as y increases, the term (ry — 7)y gets larger (i.e., more positive
or less negative). Thus, the case f(r, +oc) is definitely positive, and definitely
above the line, implying points above the line are all positive. Another way to
look at it is that the y component of the gradient vector is positive. So above the
line, where y can increase arbitrarily, f(x,y) must be positive. This means we
can make our code more specific by filling in the if statement:

if flw+1,y+0.35) < 0then
y=uy+1

The above code will work nicely for lines of the appropriate slope (i.e., between
zero and one). The reader can work out the other three cases which differ only in
small details.

If greater efficiency is desired, using an incremenral method can help. An
incremental method tries 1o make a loop more efficient by reusing computation
from the previous step. In the midpoint algorithm as presented, the main compu-
tation is the evaluation of f{r + 1,y + 0.5). Note that inside the loop, after the
first iteration, either we already evaluated f(x — 1,y +0.5) or f{zr — 1,y — 0.5}
(Figure 3.8). Note also this relationship:

fle+Ly)= flz.9) + (vo —)
fle+ly+1) = fle,y)+ (0o —) + (21 — 20).

This allows us to write an incremental version of the code:

y=Mt
d= flag + 1,40+ 0.5)

M

Figura 3.7. Top: the line
goes above the midpoint so
the top pixel is drawn. Bot-
fom; the line goes below
fhe midpoint so the bottom
pixel is drawn,

Figure 3.8. When using
the decision point shown
between the two light grey
pixels, we just drew one of
the dark grey pixels, so we
evaluated fat one of the two
left points shown,

60 3. Rastar Algorithms

for r = xp to i do
draw(x,5)
if d < () then
y=y+1
d=d+ (1 = x0) + (w0~ 1)
else
d=d+ (y—m)

This code should run faster since it has little extra setup cost compared to the
non-incremental version (that is not always true for incremental algorithms), but
it may accumulate more numetic error because the evaluation of f(x, y + (0.5)
may be composed of many adds for long lines. However, given that lines are
rarely longer than a few thousand pixels, such error is unlikely 1o be critical.
Slightly longer setup cost, but faster loop execution, can be achieved by storing
{ary —xo) + (4o — 1) and {yo — 1y) as variables. We might hope a good compiler
would do that for us, but if the code is critical, it would be wise to examine the
results of compilation to make sure,

In some cases, it is faster if an algorithm uses only integer operations. Be-
cause we have imposed the constraint that =g, xy, g, 1 are all integers, the
algorithm above is almost an integer-only algorithm. However, it does require the
initialization d = f{rg + 1, yp + 0.5). Note that this can be expanded as

flxo+ 1,50+ 0.5) = (yo — m)(xo + 1) + (21 — o) (w0 + 0.5) + Toy1 — T140-

The yy + 0.5 is not an integer operation and results in a non-integer multiplier,
But we can fix this: if f{r,y) = 0is the equation of the line, then 2 f{z, y) = 01is
also a valid equation for the same line, So if we use 2 f{x, y) instead of f(r,),
the expression for d becomes
2f(zo + Lo +0.5) = 2(3 — s)0 + 1) + (1 — x0) (210 + 1)
+ 2T0ih — 2714,
which has all integer terms. The resulting code is:
N =
d=2(yo—)0+ 1)+ {z1 —x0)(2yo + 1) + 2Zron — 2z100
for r = oy to xy do
draw (., y)
if d < 0 then
v=3+1
d=d+2{x; —2a) + (g0 — 11}
else
d=d+2(yo— 1)

3.5. Line Drawing 61

The careful reader will note that before we can execute the all-integer code above,
we must check whether m € [0, 1), and explicitly computing m requires a divide,
However, the following code, which is equivalent to the explicit slope check, can
be used:

((;h Zwo)and (xy — 2o >y —wo)) = (me(0,1))

3.56.2 Line Drawing Using Parametric Line Equations

As derived in Section 2.6.1 a parametric line in 2D that goes through points py =
{0, o) and p; = (x1,) can be written

[x] _ [.1-‘1] +#Hz — J:'u.}]
y wo+tp —)]’
or equivalently in vector form,

pit) = py + t{p; — Py).

If the slope of the line m € [~1, 1], then the “for” loop can advance in z, and we
get remarkably compact code. A similar algorithm results for m outside [—1, 1],
s only two cases are needed. Because t progresses constantly along the distance
of the line, so do the x and y components of the line; thus, we can compute ¢ as a
function of =:

& =g

t= 7
&Iy — iCp

The resulting code is:

for & = xy to x) do
t=(z—xo)/(x1 — o)
v =1y + t{y — wo)
draw (2, round(y))

A nice property of this algorithm is that it works whether or not &y > g, So the
code for parametric lines tumns out to be very simple, However, it cannot be made
integer-only as we shall see. In many computer languages, conversion from float
to integer is implemented as truncation, so the term round(y | can be implemented
as an integer conversion of (y + (0.3).

This code can also be made incremental because ¢ and therefore y change by
a constant amount in each iteration:

62 3. Raster Algorithms

{ra.b) = (0.00, 1.00, 0.00), t = 1,00
(rg.b) = (0.25, 0.75, 0.00), 1=0.75
(r.b) = (0.50, 0.50, 0.00), t =050
(ra.b) = (0.75, 0.25, 0.00), t=0.25
(rg.b) = (1.00, 0.00, 0.00), t=0.00

|
(x0,y0) (x1,y1)

Figure 3.9. A colored line switching from red to green, The middle pixel is half red and half
green which is a "dark yellow”. (See also Plate 1.}

Ay = (y —w)/(x1 — z0)

¥=to

for © = zy to | do
draw(z roundiy))
y=y+Aay

Sometimes lines are specified with RGB colors ¢ and ¢, at either end, and we
would like to change the color smoothly along the line. If we can parameterize
the line segment in terms of a ¢ € [0, 1], we can use the formula

c=(1—t)ep+ fcy.

This allows us to compute a color at each pixel. An example of such a colored
line which shifis from red to green is shown in Figure 3.9, Note that the expres-
sion for ¢ and for ¢ can also be computed incrementally if desired. The code for
this is:

ﬂwﬂm vo)/ (1 — xa)
= (r1 —ro)/{x1 — x0)
-*Z*-y = (g1 — go)/(x1 — Tp)

Ab = (b — bu},."'[:arl — xp)

Y=Y, T="0. g=g0, b=y

for & = zgto 2y do
draw{z,round({y), v, g, b)

y=y+ Ay
r=r+ Ar
g=g+A4g

b=1b+ Ab

3.6, Triangle Rasterization 63

A similar change can be made 1o the midpoint (implicit) algorithm, but it would
be difficult to do using only integer operations. In infrastructures where floating
point division is expensive, the four divides above can be replaced by one divide
and four multiplies.

3.6 Triangle Rasterization

We often want to draw a 2D tniangle with 2D points py, = (0, 40l Py = (20,01)
and py = {@wz,y2) in screen coordinates, This is similar to the line drawing
problem, but it has some of its own subtleties, It will turn out that there is no
advantage to integer coordinates for endpoints, so we will allow the (z;. ¥ to
have floating point values. As with line drawing, we may wish to interpolate
color or other properties from values at the vertices. This is straightforward if
we have the barycentric coordinates (Section 2.11). For example, if the vertices
have colors ¢y, ¢, and ¢y, the color at a point in the triangle with harycentric
coordinates (o, 3,] is
¢ = acy + Fep + vyes.

This type of interpolation of color is known in graphics as Gouwraud interpolation
after its inventor (Gouraud, 1971},

Another subtlety of rasterizing triangles is that we are usually rasterizing tri-
angles that share vertices and edges. This means we would like to rasterize ad-
jacent triangles so there are no holes. We could do this by using the midpoint
algorithm to draw the outline of each triangle and then fill in the interior pixels.
This would mean adjacent triangles both draw the same pixels along each edge.
If the adjacent triangles have different colors, the image will depend on the order
in which the two triangles are drawn. The most common way to rasterize trian-
gles that avoids the order problem and eliminates holes is to use the convention
that pixels are drawn if and only if their centers are inside the triangle, ie., the
barycentric coordinates of the pixel center are all in the interval (0, 1). This raises
the issue of what to do if the center is exactly on the edge of the triangle. There
are several ways to handle this as will be discussed later in this section. The key
observation is that barycentric coordinates allow us to decide whether to draw a
pixel and what color that pixel should be if we are interpolating colors from the
vertices. S0 our problem of rasterizing the triangle boils down to efficiently find-
ing the barycentric coordinates of pixel centers (Pineda, 1988). The brute-force
rasterization algorithm is:

for all x do
for all y do

64 3. Raster Algorithms

compute (e, 3,) for (z, y)

if (@ € [0,1] and 3 € [0, 1] and 7 € [0,1]) then
c = acy+ Jey +qee
drawpixel (z,) with color e

The rest of the algorithm limits the outer loops to a smaller set of candidate pixels
and makes the barycentric computation efficient,

We can add a simple efficiency by finding the bounding rectangle of the
three vertices and only looping over this rectangle for candidate pixels to draw,
We can compute baryeentric coordinates using Equation 2.32. This yields the
algorithm:

Tmin = foor {I*']
Ty = ceiling (x;}
Ymin = floor (y;)
Ymax = ceiling (y;)
for iy = Ymin 1O Ymay do
for & = Tyin 10 Ty do
o = frale, y)/ fralzo. w)
8= faolx,)/ faolx1,1n)
7 = forlz, y)/ forlrz, y2)
if (o > Oand @ > 0 and 5 > 0) then
c = acy + ey + o
drawpixel (i,) with color ¢

Here f;; is the line given by Equation 3.3 with the appropriate vertices:

Jou(z, 9} = (w0 — i)x + (21 — 2o)y + 2o — T100.
fialz,y) = (i —wa)e 4+ (22 — 21)y + 2102 — a0

Jaolz,y) = (y2 — wolr + (2o — 22)y + Tamo — Toy2.

Note that we have exchanged the test o £ (), 1) with & > 0 ete., because if
all of «, 3, v are positive, then we know they are all less than one because o +
A4+~ = 1. We could also compute only two of the three barycentric variables
and get the third from that relation, but it is not clear that this saves compulation
once the algorithm is made incremental, which is possible as in the line drawing
algorithms; each of the computations of «, 4, and + does an evaluation of the
form flx. y) = Ar + By 4+ C. In the inner loop, only = changes, and it changes
by one. Note that f(x + 1.y) = f{x.y) + A. This is the basis of the incremental
algorithm. In the outer loop, the evaluation changes for f(r, y) o flo,y + 1),
50 a similar efficiency can be achieved. Because «, 3, and ~ change by constam

3.6. Triangle Rasterization 65

smssamlsmﬂsm

B

et e P.-'F'-P.-'.Di!ﬂr-'.ﬂ'
EEE RE) BEL| 2ER EEE

DS S
B3 8

S| S

SEE 28

0B

(==t

Figure 3,10. A colored triangle with barycentric inferpolation. NMote that the changes In
color components are linear in each row and column as well as along each edge. In fact it is
constant along every ling, such as the diagonals, as well, [See also Plate 111.)

increments in the loop, so does the color e, So this can be made incremental as
well. For example, the red value for pixel (i + 1.y) differs from the red value
for pixel (ir, y) by a constant amount that can be precomputed. An example of a
triangle with color interpolation is shown in Figure 3.10,

3.6.1 Dealing With Pixels on Triangle Edges

We have still not discussed what to do for pixels whose centers are exactly on
the edge of a triangle. If a pixel is exactly on the edge of a triangle, then it is
also on the edge of the adjacent triangle if there is one. There is no obvious way
to award the pixel to one triangle or the other. The worst decision would be to
not draw the pixel because a hole would result between the two triangles. Better,
but still not good, would be 10 have both triangles draw the pixel. If the riangles
are transparent, this will result in a double-coloring. We would really like to
award the pixel to exactly one of the triangles, and we would like this process
to be simple; which triangle is chosen does not matter as long as the choice is
well defined.

One approach is to note that any off-screen point is definitely on exactly one
side of the shared edge and that is the edge we will draw. For two non-overlapping
triangles, the vertices notl on the edge are on opposite sides of the edge from each
other. Exactly one of these vertices will be on the same side of the edge as the
off-screen point (Figure 3.11), This is the basis of the test. The test if numbers p
and g have the same sign can be implemented as the test pg > U, which is very
efficient in most environmenis.

MNote that the test is not perfect because the line through the edge may also
go through the offscreen point, but we have at least greatly reduced the number

Fi

« Offscrean point

Figure 3.11, Tha off-
screen point will be on one
side of the triangle edge
ar the other. Exaclly one
of the non-shared vertices
a and b will be on the
same side.

66 3. Raster Algorithms

ol problematic cases. Which off-screen point is used is arbitrary, and (x, y) =
{—1,—1) is as good a choice as any, We will need to add a check for the case of a
point exactly on an edge. We would like this check not to be reached for common
cases, which are the completely inside or outside tests. This suggesis:

Tmin = floor {x;)
Tpax = ceiling (z;)
Yimin = floor (1)
Ymax = ceiling ()
Ja = hizlzo. wo)
JF,-E' - .f'_iu(i'h I.I'IJ'
JF-. = for(z2, y2)
for i = Ymin 1O Ygy do
for & = Tpp 10 Ty do
o= fralz, ¥)/ fa
3= falz.y)/fs
v = foulz,¥)/ [+
if{o = 0and 3 = 0 and 4 = 0} then
if (= 0or fofia(—1.-1) = 0)and (F = O or fafan(—1,-1) = 0)
and (v > Oor f, fo.(—1,—1) > () then
c = acy + Je; + ez
drawpixel (x, y) with color ¢

We might expect that the above code would work to eliminate holes and double-
draws only if we use exactly the same line equation for both triangles. In fact,
the line equation is the same only if the two shared vertices have the same order
in the draw call for each triangle. Otherwise the equation might flip in sign. This
could be a problem depending on whether the compiler changes the order of op-
erations. So if a robust implementation is needed, the details of the compiler and
arithmetic unit may need to be examined. The first four lines in the pseudocode
above must be coded carefully to handle cases where the edge exactly hits the
pixel center.

In addition to being amenable to an incremental implementation, there are
several potential early exit points, For example, if o is negative, there is no need
to compute & or v. While this may well result in a speed improvement, profiling is
always a good idea: the extra branches could reduce pipelining or concurrency and
might slow down the code. So as always, test any attractive looking optimizations
if the code is a critical section.

Another detail of the above code is that the divisions could be divisions by
zero for degenerate triangles, i.e., if f, = 0. Either the floating point error condi-
tions should be accounted for properly, or another test will be needed.

3.7. Simple Antialiasing 67

Figure 3.12. An antialiased and a jaggy line viewed at close range so individual pixeis are
visible,

3.7 Simple Antialiasing

One problem with the line and triangle drawing algorithms presented carlier is that
they have fairly jaggy appearances, We can lessen this visual artifact by allowing
a pixel to be “partially” on (Crow, 1978). For example, if the center of a pixel
is almast inside a black triangle on a white background, we can color it halfway
between white and black. The top line in the figure is drawn this way. In practice
this form of blurring helps visual quality, especially in animations. This is shown
as the bottom line of Figure 3.12.

The most straightforward way to create such “unjaggy™ images is to use a box
filter, where the pixel is set to the average color of the regions inside it. This
means we have to think of all drawable entities as having well-defined areas. For
example, a line is just a rectangle as shown in Figure 3.13. More sophisticated
methods of blurring for visual quality are discussed in Chapter 4. Jaggy arti-
facts, like the sawtoothed lines the midpoint algorithm generates, are a result of
aliasing, a term from signal processing. Thus, the general technique of care-
fully selecting pixel values to avoid jaggy artifacts is called anvialiasing. The
box filter will suffice for most applications that do not have extremely high visual
guality requirements.

The easiest way to implement box-filter antialiasing is to create images at
very high resolutions and then downsample. For example, if our goal is a 256
by 256 pixel image of a line with width 1.2 pixels, we could rasterize a rectangle
version of the line with width 4.8 pixels on a 1024 by 1024 screen, and then av-
erage 4 by 4 groups of pixels to get the colors for each of the 256 by 256 pixels
in the “shrunken” image. This is an approximation of the actual box-filtered im-
age, but works well when objects are not extremely small relative to the distance
between pixels.

i jffm

[11

1

Figure 3.13. An an-
tialiased line can be created
by using an underlying rect-
angle.

@
'Lm

olopmo o

e IRIE)

I
P

o [» mi:a_m';:nim

Ej_m'm m G

DO IODO
BRI

o)
[
o)

L2
o)
o)
®

("] [r] [R] [R]

Rl [R] |R| A

Figure 3.14. The lop im-
age shows the mosaic of
RGE sensors in a typical
digital camera. The bot-
tom three images show the
same patierm with individ-
wal cobors highlightead,

68 3. Raster Algorithms

3.8 Image Capture and Storage

Almost all graphics software deals with some “real” images that are captured
using digital cameras or flathed scanners. This section deals with the practicalities
of acquiring, storing, and manipulating such images,

3.8.1 Scanners and Digital Cameras

Scanners and digital cameras use some type of light-sensitive chip to record light.
The dominant technologies are CCD and CMOS arrays. These devices are sen-
sitive to light intensity across all wavelengths. To get color images, either the
light is split into three components and then filtered through red, green, and blue
filters (so three chips are needed), three passes are made with different filters and
the same chip, or the sensors on the chip are individually coated with different
colored filters,

In most current digital cameras, a single light-sensitive CCD is used with
colored filters in the Baver mosaic (Bayer, 1976) (Figure 3.14). This pattern
devotes half of the sensors to the green channel and a guarter each to red and
blue. The pattern makes the green channels a regular array at a forty-five degree
angle to the chip lattice, For natural scenes this pattern works well in practice, but
for some man-made scenes color aliasing can result. Camera manufacturers have
different proprietary algorithms for creating a single RGB image from an image
captured using the Bayer mosaic that are somewhat more complicated than the
obvious strategy of linear interpolation in each separate channel,

3.8.2 Image Storage

Maost RGB image formats use eight bits for each of the red, green, and blue chan-
nels. This results in approximately three megabytes of raw information for a sin-
gle million-pixel image. To reduce the storage requirement, most image formats
allow for some kind of compression. Al a high level, such compression is ei-
ther lossfess or lessy. No information is discarded in lossless compression, while
some information is lost unrecoverably in a lossy system. Popular image storage
formats include:

gif This lossy format indexes only 256 possible colors. The quality of the im-
age depends on how carefully these 256 colors are chosen. This format
typically works well for natural diagrams.

3.8. Image Capture and Storage 69

jpeg This lossy format compresses image blocks based on thresholds in the hu-
man visual system. This format works well for natural images.

tiff This lossless format is usually a compressed 24-bit per pixel although many
other options exist,

ppm This lossless format is typically a 24-bit per pixel uncompressed format
although many options exist,

png This is a set of lossless formats with a good set of open source management
tools,

Because of compression and variants, writing input/output routines for images
can be involved, For non-commercial applications it is advisable to just use raw
ppm if no read/write libraries are readily available.

Frequently Asked Questions

» Why don't they just make monitors linear and avoid all this gamma busi-
ness?

Ideally the 256 possible intensities of a monitor should leok evenly spaced as op-
posed to being linearly spaced in energy. Because human perception of intensity is
itself non-linear, & gamma between 1.5 and 3 (depending on viewing conditions)
will make the intensities approximately uniform in a subjective sense. In this way
gamma 15 & feature, Otherwise the manufacturers would make the monitors linear.

« How are polygons that are not triangles rasterized?

These can either be done directly scan-line by scan-line, or they can be broken
down into triangles. The latter appears to be the more popular technigue.

» |s it always better to antialias?

Mo, Some images look crisper without antialiasing. Many programs use unan-
tialiased “screen fonts” because they are easier to read.

Exercises

1. Derive the incremental form of the midpoint line drawing algorithm with
colors at endpoints for 00 < m < 1.

70

3. Raster Algorithms

2. Modify the triangle drawing algorithm so that it will draw exactly one pixel
for points on a triangle edge which goes through (z,y) = (=1, —1).

3. Simulate an image acquired from the Bayer mosaic by taking a natural im-

age (preferably a scanned photo rather than a digital photo where the Bayer
mosaic may already have been applied) and creating a greyscale image
composed of interleaved red/green/blue channels. This simulates the raw
output of a digital camera. Now create a true RGB image from that output
and compare with the original.

....g"r-; | Stemﬂ Marschner

Signal Processing

In graphics, we often deal with functions of a continuous variable: an image is
the first example you have seen, but you will encounter many more as you con-
tinue your exploration of graphics. By their nature continuous functions can’t be
directly represented in a computer; we have to somehow represent them using
a finite number of bits, One of the most useful approaches to representing con-
tinuous functions is to use samples of the function: just store the values of the
function at many different points and reconsrruct the values in between when and
if they are needed.

You are by now familiar with the idea of representing an image using a two-
dimensional grid of pixels—so you have already seen a sampled representation!
Think of an image captured by a digital camera: the actual image of the scene that
was formed by the camera's lens is a continuous function of the position on the
image plane, and the camera converted that function into a two-dimensional grid
of samples. Mathematically, the camera converted a function of type B? — C
{where C is the set of colors) to a two-dimensional array of color samples, or a
function of type Z* — C.

Another example of a sampled representation is a 2D digitizing tablet such
as the screen of a tablet computer or PDA. In this case the original function 1s
the motion of the stylus, which is a time-varying 2D position, or a function of
type B — B2, The digitizer measures the position of the stylus at many points in
time, resulting in a sequence of 2D coordinates, or a function of type & — B2 A

71

i 4, Signal Processing

mation capture system does exactly the same thing for a special marker attached
to an actor’s body: it takes the 3D position of the marker over time (R — R*) and
makes it into a series of instantaneous position measurements (7 — B¥),

Going up in dimension, a medical CT scanner, used to non-invasively examine
the interior of a person’s body, measures density as a function of position inside
the body, The output of the scanner is a 3D grid of density values: it converts the
density of the body (B* — E) to a 3D array of real numbers (2% — R).

These examples seem different, but in fact they can all be handled using ex-
actly the same mathematics, In all cases a function is being sampled at the points
of a lattice in one or more dimensions, and in all cases we need to be ahle to
reconstruct that original continuous function from the array of samples.

From the example of a 2D image, it may seem that the pixels are enough,
and we never need to think about continuous functions again once the camera has
discretized the image. But what if we want to make the image larger or smaller on
the screen, particularly by non-integer scale factors? It turns out that the simplest
algorithms to do this perform badly, introducing obvious visual artifacts known
as afiasing. Explaining why aliasing happens and understanding how to prevent it
requires the mathematics of sampling theory, The resulting algorithms are rather
simple, but the reasoning behind them, and the details of making them perform
well, can be subile.

Representing continuous functions in a computer is, of course, nol unigue o
graphics; nor is the idea of sampling and reconstruction. Sampled representations
are used in applications from digital audio to computational physics, and graphics
is just one {and by no means the first) user of the related algorithms and mathe-
matics. The fundamental facts about how to do sampling and reconstruction have
been known in the field of communications since the 19205 and were stated in
exactly the form we use them by the 1940s (Shannon & Weaver, 1964).

This chapter starts by summarizing sampling and reconstruction using the
concrete one-dimensional example of digital audio. Then we go on to present
the basic mathematics and algorithms that underlie sampling and reconstruction
in one and two dimensions. Finally we go into the details of the frequency-domain
viewpoint, which provides many insights into the behavior of these algorithms,

4.1 Digital Audio: Sampling in 1D

Although sampled representations had already been in use for years in telecom-
munications, the introduction of the compact disc in 1982, following the increased
use of digital recording for audio in the previous decade, was the first highly vis-
ible consumer application of sampling.

g

4.1. Digital Audio: Sampling in 10 73

iix&d%fa- |- Sty - @)
@ ~ vty [+i3°°o%°ﬂ”o‘tﬁ *'ﬁ»))

Figure 4.1. Sampling and reconstruction in digital audio,

In audio recording, a microphone converts sound, which exists as pressure
waves in the air, into a time-varying voliage that amounts to a measurement of the
changing air pressure at the point where the microphone is located. This electrical
signal needs to be stored somehaw so that it may be played back at a later time
and sent to a loudspeaker that converts the voltage back into pressure waves by
moving a diaphragm in synchronization with the voltage,

The digital approach to recording the audio signal (Figure 4.1) uses sampling:
an analog-to-digital converter (A/D converter, or ADC) measures the voltage
many thousand times per second, generating a stream of integers that can eas-
ily be stored on any number of media, say a disk on a computer in the recording
studio, or transmitted to another losation, say the memaory in a portable audio
player. At playback time, the data i< read out at the appropriate rate and sent to a
digital-ta-analog comerter (E/A converter, or DAC). The DAC produces a volt-
age according to the rumbers it receives, and, provided we take enough samples
to fairly represent thevariation in voltage. the resulting electrical signal is, for all
practical purposes, id:ntical to the input.

It turns out that tle number of samples per second required to end up with a
good reproduction depends on how high-pitched the sounds are that we are trying
1o record. A samplerate that works fine for reproducing a string bass or a kick
drum produces bizare-sounding results if we try 1o record a piccolo or a cymbal;
but those sounds are eproduced just fine with a higher sample rate. To avoid these
undersampling artificts the digital audio recorder filters the input to the ADC to
remove high frequecies that can cavse problems.

Another kind o problem arises on the output side. The DAC produces a
voltage that change whenever a nex sample comes in, but stays constant until
the next sample, poducing a stair-step shaped graph, These stair-steps act like
noise, adding a hig-frequency, sigral-dependent buzzing sound. To remove this
reconstriction artact, the digital :udio player filters the output from the DAC to
smooth out the weeform,

74 4. Signal Processing

* e il y
’{- | ‘“ 6L f s i,?‘\i #!‘\ '\
ALY TARRRSHRAE SANR UALARE AR HNNS AR VAR £
TR TR TATTTTTATTTIR T
L / Ll 1Y \
‘i't’ . J I *II'-'": \i‘ "lul’!I \lf
A \ \ ¥ 4 J.II" TR 1"_:"3 b
Ir '.I |IIl' \ 4 l'.l L ,"II I'. f '.1\‘ . { |
Fi \ |] / \ | \" s |
P T ST e T i TR
“I'“E' ."'I__ i _,_Ik' _?4' I"._ __."I I"._".I,"; ..__‘. / T .J‘ .':_,"_h

Figure 4.2. A sine wave {gray curva) sampled at two different rates. Top: at a high sample
rate, the resulling samples {black dots) represent the signal well. Bottom: a lower sample
rate produces an ambiguous result: the samples are exactly the same as would result from
sampling a wave of much lower frequency (dashed curve).

4.1.1 Sampling Artifacts and Aliasing

The digital audio recording chain can serve as a concrete model for the sampling
and reconstruction processes that happen i graphics. The same kind of under-
sampling and reconstruction artifacts also bappen with images or other sampled
signals in graphics, and the solution is the same: filtering before sampling and
filtering again during reconstruction,

A concrete example of the kind of artifacs that can arise from too-low sample
frequencies is shown in Figure 4.2, Here we are sampling a simple sine wave
using two different sample frequencies: 10,8 samples per cycle on the top and
1.2 samples per cycle on the bottom. The higher rate produces a set of samples
that obviously capture the signal well, but the samples remlting from the lower
sample rate are indistinguishable from samples of a low-frejuency sine wave—in
fact, faced with this set of samples the low-frequency sinisoid seems the more
likely interpretation.

Once the sampling has been done, it is impossible to kiow which of the two
signals—ithe fast or the slow sine wave—was the original, md therefore there is
no single method that can properly reconstuct the signal inboth cases, Because
the high frequency signal is “pretending to %™ a low-frequacy signal, this phe-
nomenon is known as alfasing.

Aliasing shows up whenever flaws in sampling and recontruction lead to arti-
facts at surprising frequencies. In audio, aliating takes the fom of odd-sounding
extra tones—a bell ringing at 10KHz, after being sampled al8KHz, wrns into o

4.2, Convolution 75

6KHz tone. In images, aliasing often takes the form of moiré patterns that re-
sult from the interaction of the sample grid with regular features in an image, for
instance the window blinds in Figure 4.34,

Another example of aliasing in a synthetic image is the familiar stair-stepping
on straight lines that are rendered with only black and white pixels (Figure 4.34).
This is an example of small-scale features (the sharp edges of the lines) creating
artifacts at a different scale (for shallow-slope lines the stair steps are very long).

The basic issues of sampling and reconstruction can be understood simply
based on features being too small or too large, but some more quantitative ques-
tions are harder to answer:

* What sample rate is high enough to ensure good results?
o What kinds of filters are appropriate for sampling and reconstruction?
o What degree of smoothing is required to avoid aliasing?

Solid answers to these questions will have to wait until we have developed the
theory fully in Section 4.5

4.2 Convolution

Before we discuss algorithms for sanpling and reconstruction, we'll first examine
the mathematical concept on whict they are based—convolurion. Convolution
is a simple mathematical concept that underlies the algorithms that are used for
sampling, filtering, and reconstruction. 1t also is the basis of how we will analyze
these algorithms laterin the chapte:

Convolution is anoperation onfunctions: it takes two functions and combines
them to produce a nev function. In this book, the convolution operator is denoted
by a star: the result o applying cenvolution to the functions fand gis [+ g. We
say that f is convolved with g, and f # g is the convolution of [and 5.

Convolution can se applied either to continuous functions (functions f{x) that
are defined for any eal argument) or to discrete sequences (functions al] that
are defined only forinteger arguments ¢). 1t can also be applied to functions de-
fined on one-dimendonal, two-dimersional, or higher-dimensional domains (that
is, functions of one two, or more guments). We will start with the discrete,
one-dimensional cse first, then coitinue to contimuous functions and two- and
three-dimensional unctions,

For conveniene in the definitbns, we generally assume that the functions’
domains go on forver, though of wurse in practice they will have to stop some-
where, and we hae to handle the mnd points in a special way,

L

76 4. Signal Processing

continuous maoving average discrete moving average

il

X-r X X+T f=r | I+r

Figure 4.3. Smoothing using a moving average,

4.21 Moving Averages

To get a basic picture of convolution, consider the example of smoothing a 1D
function using a moving average (Figurz 4.3). To get a smoothed value at any
point, we compute the average of the function over a range extending a distance
r in each direction, The distance r, called the radius of the smoothing operation,
is a parameter that controls how much smoothing happens.

We can state this idea mathematically for discrete or continuous functions, If
we're smoothing a continuous function g, averaging means integrating g over
an interval and then dividing by the length of the interval:

o

h{.‘;:}zﬁl; g(t)dt.

r—r
On the other hand, if we're smoothing a disrete function bfi], averaging means
summing b for a range of indices and dividing by the number of values:

i

cfi] = 2:-11 > bl (4.1)

J=i-r

In each case, the normalization constant 15 chosen so that ifwe smooth a constant
function the result will be the same function,

This idea of a moving average is the &ssence of convolition; the only differ-
ence is that in convolution the moving averipe is a weightec average,

422 Discrete Convolution

We will start with the most concrete case of convolution: omvolving a discrete
sequence ali] with another discrete sequence bi]. The result isa discrete sequence
{a + b)[i]. The process is just like smoothingh with a movilg average, but this

4.2, Convolution i

1] L]
o " e .l v L]

Ll

&= ++001464100:--
et

))

M. i.';.T.,T .__._TH
Il HHMM

|
Figure 4.4, Compuling one value in the dscrete convolution of a sequence b with a filter a
that has support five samples wide. Eachsample in a « bis an average of nearby samples
in b, weighted by the valuss of a.

axh

time instead of equally weighting allsamples within a distance r, we use a second
sequence a to give a weight to eachsample (Figure 4.4). The value a[j] gives the
weight for a sample that is a distance j from the index 1 where we are evaluating
the convolution, Hereis the definiton of (a = b}, expressed as a formula;

(@ b)li] = Y_ aljlbli —). 4.2)

4

By omitting boundson j, we indicat: that this sum runs over all integers (that
is, from —oo to +=). Figure 4.4 llustrates how one output sample is com-
puted, using the exanple of a = 5[, 0,1,4,6.4,1,0,.. | —thatis, a[0] = &,
al+l] = I'j'—ﬁ. elc.

In graphics, oneof the two funcions will usually have finite support (as does
the example in Figre 4.4), which means that it is non-zero only over a finite
interval of argumet values. If we i5sume that a has finite support, there is some
radins 7 such that [j] = 0 wheneer [j| > r. In that case, we can write the sum

= 78 4. Signal Processing

above as

(axb)li] = S aljbli — jl.
Jj=-r

and we can express the definition in code as

function convolve(sequence n, sequence b, int v, int ¢)
a=10
for j = ~r tor
5= s+ aljb[i —]l
return 5

Convolution Filters

Convolution is important because we canuse it to perform filtering. Looking back
at our first example of filtering, the moving average, we can now reinterpret that

7 sinoothing operation as convolution with a particular sequence, When we com-
2re I I [I [pute an average over some limited range of indices, that is the same as weighting
the points in the range all identically and weighting the rest of the points with

zeros, This kind of filter, which has a condant value over the interval where it is

=t & non-zero, is known as a box filter (because |t looks like a rectangle if you draw its

Figure 4.5. A discrele box graph—see Figure 4.5). For a box filter of mdius r the weight is 1/(2r + 1):
filter,

e
= | TEIsn
{0 otherwise,

If you substitute this filter into Equation 4.2 you will find that it reduces to the
moving average in Equation 4.1,

As in this example, convolution filters are usually desgned so that they sum
to |, That way, they don't affect the ovenall level of the sigal.

Example: Convolving a box and a step. For a simple eample of filtering, let
the signal be the step function
| >
B = {1 i>0,

0 <0,
and the filter be the five-point box filter centwed at zero,

L 1f1 25523,
alil = 5{{} othewise.

4.2 Comvolution 79

“ 'lHIH

@ %111 "1

afidfi-f 0 0 0o 0 O 0O 0O oD 2222 20

ajibi—] 0 0 0 2 2 2 o

hX
= '/
(a = BI n\\‘f ,TIIII]I I‘[f

-7 0 [== B

Figure 4.6. Discrete corvolution of a bod lunction with a step function.

What is the result of convolving @ and 7 At a particular index ¢, as shown in
Figure 4.6, the result s the average of the step function over the range from ¢ — 2
toi+2 Ifi < —2, we are averaging all zeros and the result is zero. If i > 2,
we are averaging all snes and the resuk is one. In between there are § + 3 ones,
resulting in the \rnluei'gi", The output i5 a linear ramp that goes from 0 to 1 over
five samples: 1[...,,0,1,2,3,4,5.5...].

Properties of Convlution

The way we've writzn it so far, comolution seems like an asymmetric operation:
h is the sequence were smoothing, md a provides the weights. But one of the nice
properties of convoution is that it :ctually doesn’t make any difference which is
which: the filter arl the signal areinterchangeable. To see this, just rethink the
sum in Equation 4! with the indires counting from the origin of the sequence b,
rather than from tk origin of a vhere we are computing the value. That is, we

o

Figure 4.7.
identity filter,

The discrete

80 4. Signal Processing

replace j with i — k. The result of this change of variable is

(axb)i] =Y ali ~ kIbli — (i — k)]
k
=5 bfklali — K].
k

This is exactly the same as Equation 4.2 but with b acting as the filter and «
acting as the signal. So for any sequences a and &, (@« b) = (b*a), and we say
that convolution is a commutative operation.'

More generally, convolution is a “multiplication-like™ operation. Like multi-
plication or addition of numbers or functions, neither the order of the arguments
nor the placement of parentheses affects the result. Also, convolution relates 1o
addition in the same way that multiplication does. To be precise, convolution is
commutative and associative, and it is distributive over addition,

commutative: (a*b)li] = (b=a)li]
associative: {a* (b+ec))il = ({a«b)*e}i]
distributive: (a=(b+e))fi] = (axb+axe)i

These properties are very natural if we think of convolution as being like multi-
plication, and they are very handy to know about because they can help us save
work by simplifying convolutions before we actually compute them. For instance,
suppose we want to take a sequence b and convolve it with three fillers, ay, ag,
and az—that is, we want a3 * (a2 « (g b)), If the sequence is long and the
filters are short (that is, they have small radi), it is much faster to first convolve
the three filters together (computing a; + e #ag) and finally to convelve the result
with the signal, computing (a; » a2 # @z} + b, which we knew from commutativity
and associativity gives the same result,

A very simple filter serves as an identity for discrete convolution: it is the
discrete filter of radius zero, or the sequence dfi] =(0,1,0,0,... (Figure
4.7}, If we convolve o with a signal b, there will be only ore non-zero lerm in the
SLIm:

i=0

(d=B)(i] = D _ 4[j1bfi - 3]
i=0
= bfi].

! You may have noticed that one of the functions in th convolution sum eems to be flipped over—
that is, a[j] gives the weight for the sample j units eafier in the sequene, while a|—j] gives the
weight for the sample j units fater in the sequence, Tie reason for thishas o do with ensuring
wssociativity, see Exercise 4, Most of the filters we use we symmetric, styou hardly ever need o
waorry about this.

4.2, Convolution a1

So clearly, convolving b with o just gives back b again. The sequence o is known
as the discrete impluse. 1015 occasionally useful in expressing a filter: for instance,
the process of smoothing a signal b with a filter o and then subtracting that from
the original could be expressed as a single convolution with the filter d — a:

c=b—axb=dsb—-axb=(d—a)xbh

423 Convolution as a Sum of Shifted Filters

There is a second, entirely equivalent, way of interpreting Equation 4.2. Looking
at the samples of @ « I one at a time leads to the weighted-average interpretation
that we have already seen. But if we omit the [{], we can instead think of the sum
as adding together entire sequences. One piece of notation is required 1o make
this work: if b is a sequence, then the same sequence shifted to the right by j
places is called b_.; (Figure 4.8):

b [i] = bfi — jl.

Then, we can write Equation 4.2 as a stalement about the whole sequence (a # b}
rather than element-by-element:

(axh) = Z aljlb_;.
]

Looking at it this way, the convolution is a sum of shified copies of b, weighted
by the entries of @ (Figure 4.9). Because of commutativity, we can pick either a

o . Ll

0

amb_,z
RETRANEAETARER

I I T I

0 5 10 15

alsibs o
i - 9

Figure 4.9, Discrete corvolution as a sum of shifted copias of the filter,

Flgure 4.8. Shifting a se-
guence btoget b,

g2 4. Signal Processing

or b as the filter; if we choose b, then we are adding up one copy of the filter for
every sample in the input.

424 Convolution with Continuous Functions

While it is true that discrete sequences are what we actually work with in a com-
puter program, these sampled sequences are supposed to represent continuous
functions, and often we need to reason mathematically about the continuous func-
tions in order to figure out what to do. For this reason it is useful to define con-
volution between continuous functions and also between continuous and discrete
functions.

The convelution of two continuous functions is the obvious generalization of
Equation 4.2, with an integral replacing the sum:

+00
(rea)@) = [S0l vyae. @3

One way of interpreting this definition is that the convolution of f and g, evaluated
at the argument r, is the area under the curve of the product of the two functions

I
I}

Htigix =1}
ared area
v /—\‘—/
I3 P - M

Figure 4.10. Continuous comolution.

9

4.2. Convolution B3

after we shift f so that f(0) lines up with g(x). Just like in the discrete case,
the convelution is a moving average, with the filter providing the weights for the
average (See Figure 4.10),

Like discrete convolution, convolution of continuous functions is commuta-
tive and associative, and it is distributive over addition. Also as with the discrete
case, the continuous convolution can be seen as a sum of copies of the filter rather
than the computation of weighted averages, Except, in this case, there are in-
finitely many copies of the filter:

oo
(ke f_ F(t)ge d.

Example: Convolution of two box functions. Let f be a box function:

fm={1 “3S2 <y,

{1 otherwise.

Then what is f « 7 The definition (Equation 4.3) gives
(f* filz) = f_ flt)f(z —t)dt.

Figure 4.11 shows the two cases of this integral. The two boxes might have zero
overlap, which happens when = < —1 or x > 1; in this case the result is zero.
When —1 < z < 1, the overlap depends on the separation between the two boxes,

fix)

%0 % x—

w4k Jdo Lk

-1 0 -—1 0
At fx— 1) Q
(F *) x) | SN
-% 0% x-—-

Flgure 4.11. Convolving two boxes yields a tent function.

L] 84 4. Signal Processing

which is |x|; the result is 1 — |z|. So

_Ji-lg] =1xz<l,
(f f)la) = {ﬂ ey
This function, known as the renr funcrion. is another common filier (see Sec-
tion 4.3.1).

The Dirac Delta Function

In discrete convolution, we saw that the discrete impulse o acted as an identity:

89 f 4 = a. In the continuous case, there is also an identity function, called the
| Dirac impulse or Dirac delta function, denoted &(x).

0 Intuitively, the delta function is a very narrow, very tall spike that has infinites-

i imal width but still has area equal to 1 (Figure 4.12). The key defining property of

Figure 4.12. The Dirac the delta function is that multiplying it by a function selects out the value exactly
delta function 4(x). it o

[" §@) f(2)dz = £(0).

The delta function does not have a well-defined value at 0 (you can think of its
value loosely as +oc), but it does have the value d(x) = 0 for all & # 0.

From this property of selecting out single values, it follows that the delta func-
tion is the identity for continuous convolution (Figure 4.13). The convolution of

ey

8

Bt —

{6 = e}

Figure 4.13. Convolving a function with 4{x) returns a copy of the same function,

4.2. Convolution 85

4 with a function f is

o

@+ N@ = [80—t = 1)

=00

Sod*f=F.

4.2.5 Discrete-Continuous Convolution

There are two ways to connect the discrete and continuous worlds. One is sam-
pling: we convert a continuous function into a discrete one by writing down the
function’s value at all integer arguments and forgetting about the rest. Given a
continuous function f(x), we can sample it to convert to a discrete sequence ali:

ali] = f{i).

Going the other way, from a discrete function, or sequence, to a continuous func-
tion, is called reconsrruction. This is accomplished using yet another form of
convolution, the discrete-continuous form. In this case, we are filtering a discrete
sequence ali| with a continuous filter f{x):

(ax f)(z) =Y ali] f(z -).

¥
The value of the reconstructed function a+ f at r is a weighted sum of the samples

ali| for values of 1 near = (Figure 4.14). The weights come from the filter f, which
is evaluated at a set of points spaced one unit apart. For example, if # = 5.3 and

-rﬂIIHifiI'T'I”TrTHT
nx—fl__‘_/;_ f:\._ _/;\._.

Al A=} ¥ T ® 2 11 s ,__-._T

gt
o =

Flgure 4,14, Discrete-continuous comolution,

86 4. Signal Processing

f has radius 2, f is evaluated at 1.3, 0.3, —0.7, and —1.7. Note that for discrete-
continuous convolution we generally write the sequence first and the filter second,
50 that the sum is over integers,

As with discrete convolution, we can put bounds on the sum if we know the
filter's radius, r, eliminating all points where the difference between x and 7 is at
least v

|z+r]
(axfiz)= 3 alilfz-i).
i=[r—r|
Mote, that if a point falls exactly at distance v from = (i.e., if — r turns out to be
an integer), it will be left out of the sum. This is in contrast to the discrete case,
where we included the point at § — r.
Expressed in code, this is:
function reconstruct{sequence a, filter f, real &)
s=1
r = f.radius
fori= [z —r|to|z+r|do
s =5+ afi| flz —1i)
return s
As with the other forms of convolution, discrete-continuous convolution may
be seen as summing shifted copies of the filter (Figure 4.15):

lax f)]= Z“[’:}f—oi-

Discrete-continuous convolution is closely related o splines. For uniform
splines (a uniform B-spline, for instance), the parameterized curve for the spline

“HTHTIJITLI

Figure 4.15. Reconstruction (discrete-continuous convalution) as a sum of shifted copies
of the filter,

4.2, Convolution 87

is exactly the convolution of the spline’s basis function with the control point
sequence (see Section 15.6.2),

4,26 Convolution in More than One Dimension

So far, everything we have said about sampling and reconstruction has been one-
dimensional: there has been a single variable x or a single sequence index i.
Many of the important applications of sampling and reconstruction in graphics,
though, are applied to two-dimensional functions—in particular, to 2D images.
Fortunately, the generalization of sampling algorithms and theory from 1D to 2D,
3D, and beyond is conceptually very simple.

Beginning with the definition of discrete convolution, we can generalize it to
two dimensions by making the sum into a double sum:

(a*b)li,j] = Zzﬂ[hjfb[“—hi—il

If @ is a finitely supported filter of radius r (that is, it has (2r + 1)? values),
then we can write this sum with bounds (Figure 4.16):

i'=r j'=r

(axb)igl= 3 > ali',Ibli—+.5 -3

i =—r'_1"=—1'

fiee @

Fand
=

Figure 4.16. The weights for the nine input samples that contribute to the discrate convalu-
tion at point (1, J) with a fiter a of radius 1.

fi=a’, ~y")ax"dy’
et
(x, y)e 1
e

Figure 4.17. The weight
for an infinitesimal area in
the input signal resulting
from confinuous convolu-
tion at (x, ¥

88 4. Signal Processing

and express it in code:
function convolve2d(filter2d a, filter2d b, int {, int j)
=1
r = a.radius
fori' = —r 10 do
for ' = —rtordo
s = 8+ ali'|li'Ibli — 1l — 7]
return s
This definition can be interpreted in the same way as in the 1D} case: each
output sample is a weighted average of an area in the input, using the 2D filter as
a “mask” to determine the weight of each sample in the average,
Continuing the generalization, we can write continuous-continuous (Figure
4.17) and discrete-continuous (Figure 4.18) convolutions in 2D as well:

(f *g)(z,y) = fff(x’,y'}gtw—m’,y~y']dz*dy*;
(ax f)zy) =3 ali,flf(z — i,y —3).
i 3

In each case, the result at a particular point is a weighted average of the input near
that point. For the continuous-continuous case, it is a weighted integral over a
region centered at that point, and in the discrete-continuous case it is a weighted
average of all the samples that fall near the point,

_élqu,-u'l éﬂj,—lj! éﬂ—.?.—ﬁ.ﬂ-] A-1T-1%

-E'mi_ﬂ _a,ru.—ji ﬂ_th—.'.L—j] S =9
5
gl .
(L] T.5 1.7, 5
EJ'tT aJ’I ﬂﬂ E'ﬁ)
|
—~ 2
?J‘U-'.Iﬁr ?J’LJ.ISP ?.ﬂ---'-‘.!,ﬂ Si-17,15

Figure 4.18. The weights for the 16 input samplas that contribute 1o the discrete-continuous
convolution at point (x,) for a reconstruction filter of radius 2.

4.3, Convolution Filters 89

Once we have gone lrom 1D to 2D, it should be fairly clear how 1o generalize
further to 3D or even to higher dimensions.

4.3 Convolution Filters

Now that we have the machinery of convolution, let's examine some of the par-
ticular filters commonly used in graphics.

4.3.1 A Gallery of Convolution Filters

The Box Filter

The box filter (Figure 4.19) is a piecewise constant function whose integral is
equal to one. As a discrete filter, it can be written as

i 1/(2r+1) i<,
i -1 =
P { otherwise.

Note that for symmetry we include both endpoinis.
As a continuous filter, we write

1/(27) —r<sz<r,
{ otherwise.

Joarr(z) = {

In this case, we exclude one endpoint which makes the box of radius (.5 usable
as a reconstruction filter. It is because the box filter is discontinuous that these

boundary cases are important, and so for this particular filter, we need o pay

attention to them. We write just fh, for the common case of r = i

The Tent Filter

The tent, or linear filter (Figure 4.20) is a continuous, piecewise linear function:

s {1 — |zl x| <1,

0 otherwise;

ﬁm.r{.'r} E— M

For filters that are at least C'¥ (that is, there are no sudden jumps in the value,
as there are with the box), we no longer need to separate the definitions of the

L

= %
I —

—r r
X =

Figure 4.19. The discrata
and continuous box fitters.

Figure 4.20. The tent filter
and two scaled verslons,

Figure 4,21. The
Gaussian filtar.

Figure 4.22. The B-spline
filter.

e et

N -

Figure 4.23. The Catmull-
Rom filter.

80 4. Signal Processing

discrete and continuous filters: the discrete filter is just the continuous filter sam-
pled at the integers. Also note that for simplicity we define fiuy » by scaling the
“standard size” tent filter fug. From now on, we'll take this scaling for granted:
once we define a filter f, then we can use f to mean “the filter f stretched out
by r and also scaled down by " Note that f, has the same integral as f, and we
will always make sure that the value of the integral is equal to 1.0,

The Gaussian Filter

The Gaussian function (Figure 4.21), also known as the normal distribution, is
an important filter theoretically and practically. We'll see more of its special
properties as the chapter goes on:

e = =e
The Gaussian does not have finite support, although because of the exponential
decay, its values rapidly become small enough to ignore. When necessary, then,
we can trim the tails from the function by setting it to zero outside some radius,
The Gaussian makes a good sampling filter because it is very smooth; we'll make
this statement more precise later in the chapter.

The B-Spline Cubic Filter

Many filters are defined as piecewise polynomials, and cubic filters with four
pieces are often used as reconstruction filters. One such filter is known as the B-
spline filler (Figure 4.22) because of its origins as a blending function for spline
curves (see Chapter 15);

=31 = |z +3(1 = |=zP+3(1—|z)}+1 —-1<zx<]1,
fa(e) =51 @~ P’ L<lel<2,
0 otherwise.
Among piecewise cubics, the B-spline is special because it has continuous first
and second derivatives—that is, it is C*. A more concise way of defining this
filter is Fiz = foox * foox * foox * foox: proving that the longer form above is
equivalent is a nice exercise in convolution (see Exercise 3),

The Catmull-Rom Cubic Filter

Another piecewise cubic filter named for a spline, the Catmull-Rom filter (Figure
4.23), has the value zero at & = —2, —1, 1, and 2, which means it will inrerpolare

4.3. Convolution Filters a1

the samples when used as a reconstruction filter (Section 4.3.2):

—3(1— |z|)*+4(1 - |22+ (1= |af) -1<z<1,
(2= |z)*—(2 - |=))® 1<z <2,
0 otherwise.

felz) =

B | —

The Mitchell-Netravali Cubic Filter

For the all-important application of resampling images, Mitchell and Netravali
{Mitchell & Netravali, 1988) made a study of cubic filters and recommended one
part way between the previous two filters as the best all-around choice (Figure
4.24). It is simply a weighted combination of the previous two filters:

| 2
Farlz) = :j.futa'} + Eff;lri‘-]

211 =z +2T = |=* +91 = |2]) +1 —-1<x <],
=15 17(- f)® —6(2 — |=|)® 12 x| £2,
otherwise,

4.3.2 Properties of Filters

Filters have some traditional terminology that goes with them, which we use to
describe the filters and compare them to one another.

The impulse response of a filter is just another name for the function: it is
the response of the filter to a signal that just contains an impluse (and recall that
convolving with an impulse just gives back the filter),

A continuous filter is inrerpolat-
ing if, when it is used to reconstruct

|
a continuous function from a dis- W mmwrmm

crete sequence, the resulting func-

tion takes on exactly the values of A_‘— flter

the samples ar the sample points— e o 1 0 0 -=— weights

that is, it c?nnects Ihe: dots” rather Figurs 4.25. An interpolating fiter reconstructs
than producing a function that only the sample points exactly because it has the

goes near the dots. lnlerpﬂ'rnting fil- value zerc at all non-zero integer offsats from
the center,

ters are exactly those filters f for

which f{0) = 1 and f{i) = { for all non-zero integers i (Figure 4.25).

=2 = 1 2

X

Figure 4.24. The Mitchell-
Metravali filter,

92 4. Signal Processing

A filter that takes on negative
values has ringing or overshoor: it overshoo! \
will produce extra oscillations in the \' avershoot
value around sharp changes in the
value of the function being filterad.

For instance, the Catmull-Rom Figure 43‘:- A filter with mﬂﬁw‘-’: 15?“611; will
7 : always produce some overs en filtering
filter has negative lobes on either o raconstructing a sharp discontinuity.

side, and if you filter a step function
with it, 1t will exaggerate the step a bit, resulting in function values that under-
shoot 0 and overshoot | (Figure 4.26).

A continuous filter is ripple free if, when used as a reconstruction filter. it
will reconstruct a constant sequence as a constant function (Figure 4.27). This is
equivalent to the requirement that the filter sum to one on any integer-spaced grid:

Zf{m+:‘:l =1 forallz.

A continuous filter has a degree of comtinuity, which is the highest-order
derivative that is defined everywhere. A filter, like the box filter, that has sud-
den jumps in its value is pot continuous at all. A flter that is continuous but
has sharp comners (discontinuities in the first derivative), such as the tent filter,
has order of continuity zero, and we say it is C°, A filter that has a continuous
derivative (no sharp corners), such as the piecewise cubic filters in the previous
section, is C''; if its second derivative is also continuous, as is true of the B-spline
filter, it is C*. The order of continuity of a filter is particularly important for a
reconstruction filter because the reconstructed function inherits the continuity of
the filter.

lmw___m .

Figure 4.27. The tent filter of radius 1 is a ripple-free reconstruction filter; the Gaussian
filter with standard deviation 1/2 is not.

4.3. Corvolution Filters 93

Separable Filters

So far we have only discussed filters for 1D convolution, but for images and other
multidimensional signals we need filters too. In general, any 2D function could
be a 2D filter, and occasionally it is useful 1o define them this way. But, in most
cases, we can build suitable 2D (or higher-dimensional) filters from the 1D filters
we have already seen.

The most useful way of doing this is by using a separable filter. The valoe of
a separable filter fo(x,) at a particular = and y is simply the product of f; (the
1D filter) evaluated at = and at y:

fatz,y) = fulz) fily)-

Similarly, for discrete filters,
az{i, j] = a1 [i]ay [j].

Any horizontal or vertical slice through f; is a scaled copy of fy. The integral of
f2 is the square of the integral of fy, so in particular if f; is normalized, then so

is fg.

Example: The separable tent filter. [f we choose the tent function for f, the
resulting piecewise bilinear function (Figure 4.28) is

(I=|z|{1—[yl) [#[<1 and [y|<1,
0 otherwise,

fﬁ.hnl{u:r y) = {

The profiles along the coordinate axes are tent functions, but the profiles along
the diagonals are quadratics (for instance, along the line x = y in the positive
quadrant, we see the quadratic function (1 — #)%).

Figure 4.28. The separable 20 tent filter,

94 4. Signal Processing

Flgure 4.29. The 20 Gausslan filter, which is both separable and radially symmaetric,

Example: The 2D Gaussian filter. 1 we choose the Gaussian function for fy,
- the resulting 2D function (Figure 4.29) is

SN N S,
fﬂ.p(i-yj = ﬂ (’L &) '

(E—r=2+y"m) .

-3
T 2¢
1 2
_—— T /2
3¢ :
Motice that this is {up to a scale factor) the same function we would get if we
revolved the 1D Gaussian around the origin to produce a circularly symmetric
function. The property of being both circularly symmetric and separable at the
same time is unique to the Gaussian function. The profiles along the coordinate
axes are Gaussians, but so are the profiles along any direction at any offset from
the center.

The key advantage of separable filters over other 2D filters has to do with ef-
ficiency in implementation. Let’s substitute the definition of az into the definition
of discrete convolution:

(aa % b)[i. 3] = 3) au[’]a[5'bli — ', — 5°).

l'_f j]’

Note that a;[i'] does not depend on j' and can be factored out of the inner sum:

=Y i)Y alibli— 5 -4,
it 7

4.3, Corvolution Filters 95

Let’s abbreviate the inner sum as S[k|:

Sk} =Y as[ilblk, 5 = i'%;

:

{az *b)i.j] = Zm "18Ji — '] (4.4)

With the equation in this form, we can first compute and store S[i — ¢'| for each
value of ', and then compute the outer sum using these stored values. At first
glance this does not seem remarkable, since we still had to do work proportional
to (2r + 1)? to compute all the inner sums. However, it's quite different if we
want to compute the value at many points [i, j|.

Suppose we need to compute ag+bat |2, 2] and [3, 2], and a, has a radius of 2.
Examining Equation 4.4, we can see that we will need 5[0],.. ., S[4] to compute
the result at [2, 2], and we will need 5[1], ..., 5[5] to compute the result at [3, 2|.
So, in the separable formulation, we can just compute all six values of 5 and share
5[], ...,5[4] (Figure 4.30).

This savings has great significance for large filters. Filtering an m by n 2D
image with a filter of radius r in the general case requires computation of {2r+1)?
products per pixel, while filtering the image with a separable filter of the same size
reguires 2(2¢ + 1) products (at the expense of some intermediate storage). This
change in asymptotic complexity from O(r?) to O(r) enables the use of much
larger filters.

The algorithm is:

function filterImage{image [, filter f)
r = f.oradius
1. = I.width
riy = Iheight
allocate storage array S[0, ... ,ne — 1]
allocate image Iouefr ... ne —r—1][r.. .. 0y —r— 1]
initialize S and I,;: to all zero
fory=rtwon, —r—1do
for zr =0ton, — 1do
Sz) =
fori=—ritordo
Stz] = Sia] + flijla]ly — i

forr=rton,—r—1do

fori=—rtordo
Fou [I][y] = dout [T] [y] + III]S[‘! = i]
return I,

Figure 4.30. Com-
puting two oulput points
using separate 20 amays
of 25 samples (above] vs.
filtering once along the
columns, then using sepa-
rate 10 arrays of five sam-
ples (balow).

96 4. Signal Processing

For simplicity, this function avoids all questions of boundaries by trimming r
pixels off all four sides of the output image. In practice there are various ways Lo
handle the boundaries; see Section 4.4.3,

4.4 Signal Processing for Images

We have discussed sampling, filtering, and reconstruction in the abstract so far,
using mostly 1D signals for examples. But as we observed at the beginning of the
chapter, the most important and most common application of signal processing in
graphics is for sampled images. Let us look carefully at how all this applies to
images.

4.4.1 Image Filtering Using Discrete Filters

Perhaps the simplest application of convolution is processing images using dis-
crete convolution. Some of the most widely vsed features of image manipulation
programs are simple convolution filters. Blurring of images can be achieved by
convolving with many common lowpass filters, ranging from the box to the Gaus-
sian (Figure 4.31). A Gaussian filter creates a very smooth-looking blur and is

ariginal box Blur

finenr blur Ginussian blur
-~

Figure 4.31. Blurring an image by convolution with each of three different filters.

4.4. Signal Processing for Images a7

Figure 4.32. Sharpening an image using & conmolution filter,

commonly used for this purpose.

The opposite of blurring is sharpening, and one way to do this is by using
the “unsharp mask”™ procedure: subtract a fraction o of a blurred image from the
original. With a rescaling to avoid changing the overall brightness, we have

Liwg = (1 + el —a(foe* 1)
= ({1 +a)d—af)1

G fﬁharp'['?- o) = 1,

where f, . is the Gaussian filter of width o, Using the discrete impluse « and
the distributive property of convolution, we were able to write this whole process
as a single filter that depends on both the width of the blur and the degree of
sharpening (Figure 4,32,

Another example of combining two discrete filters is a drop shadow. 1i's com-
mon to take a blured, shifted copy of an object’s outline to create a soft drop
shadow (Figure 4.33). We can express the shifting operation as convolution with
an off-center impulse: Figure 4.33. A soft drop

shadow.
g 1 t=mand j=n,
r.l’,“_“{r.__}} _ { i i J T

0 otherwise.
Shifting. then blurring, is achieved by convolving with both filters:

Livadow = S % (dm o+ 1)
= [_Iry.a %ty) % 1
= Fonadow (118, TR,) % 1,

Here we have used associativity to group the two operations into a single filler
with three parameters.

a8 4, Signal Processing

Figure 4,34. Two artifacts of allasing in images: meiré patterns in periodic texturas (laft),
and “jaggies” on straight lines (right).

4.4.2 Antialiasing in Image Sampling

In image synthesis, we often have the task of producing a sampled representation
of an image for which we have a continuous mathematical formula (or at least a
procedure we can use 1o compuie the color at any point, not just at integer pixel
positions), Ray tracing is a common example; we'll learn more about ray tracing
and the specific methods for antialiasing in Chapter 1. In the language of signal
processing, we have a continuous 2D signal (the image) that we need to sample
on a regular 2D lattice. If we go ahead and sample the image without any special
measures, the result will exhibit various aliasing artifacts (Figure 4.34). At sharp
edges in the image, we see siair-step artifacts known as “jaggies.” In areas where
there are repeating patterns, we see wide bands known as moiré paiterns.

The problem here is that the image contains too many small-scale features;
we need to smooth it out by filtering it before sampling. Looking back at the def-
inition of continuous convolution in Equation 4.3, we need to average the image
over an area around the pixel location, rather than just taking the value at a single

tent

Figure 4,35, A comparison of three different sampling fiters being used to antialias a
difficult test image that contains circles that are spaced closer and closer as they get langer,

e e —

4.4. Signal Processing for Images a9

paint. The specific methods for doing this are discussed in Chapter 10, A simple
filter like a box will improve the appearance of sharp edges, but it still produces
some moiré patterns (Figure 4.35). The Gaussian filter, which is very smooth, is
much more effective against the moiré patterns, at the expense of overall some-
what more blurring. These two examples illustrate the tradeoff between sharpness
and aliasing that is fundamental to choosing antialiasing filters,

4.4.3 Reconstruction and Resampling

One of the most common image operations where careful filtering is crucial is
resampiing—changing the sample rate, or changing the image size.

Suppose we have taken an image with a digital camera that is 3000 by 2000
pixels in size, and we want to display it on a monitor that has only 1280 by 1024
pixels. In order to make it fit, while maintaining the 3:2 aspect ratio, we need 0
resample it to 1278 by 832 pixels. How should we go about this?

original sequence

NI

*

r '\. reconstruction filler

‘ reconstrucied function
|

sampie

A4

resampled sequence

jmrmﬂmHwhmrﬂﬂﬂ

Figure 4.36. Resampling an image consists of two logical steps that are combined into a
single oparation in code. First, we usa a reconstruction filter to define a smooth, continuous
function from the input samples. Then, we sample that function on a new grid to get the

output samples.

100 4, Signal Processing

One way to approach this problem is to think of the process as dropping pixels:
the size ratio is between 2 and 3, so we'll have to drop out one or two pixels
between pixels that we keep. It's possible to shrink an image in this way. but
the quality of the result is low—the images in Figure 4.34 were made using pixel
dropping. Pixel dropping is very fast, however, and it is a reasonable choice to
make a preview of the resized image during an interactive manipulation.

The way to think about resizing images is as a resampling operation: we
want a set of samples of the image on a particular grid that is defined by the new
image dimensions, and we get them by sampling a continuous function that is
reconstructed from the input samples (Figure 4.36). Looking at it this way, it's
just a sequence of standard image processing operations: first we reconstruct a
continuous function from the input samples, and then we sample that function
just as we would sample any other continuous image, To avoid aliasing artifacts,
appropriate filters need to be used at each stage.

A small example is shown in
Figure 4.37: if the original im-

age is |2 by 9 pixels and the new Dl s £t 1Sl 8 Ol Ml oy
one is 8 by 6 pixels, there are s el el el 0 M) Nl] el
2/3 as many output pixels as in- o I _ "_ 24 [l B2 [A (I
put pixels in each dimension, so0 C NG P P T g PR P SURE e
their spacing acrosstheimageis ||« « |« = = « & = 2 = |
3/2 the spacing of the original 2 I 55 1P P LT O L S S S
samples.

Inodes 0o coime il Wil | ot e S T
a value for each of the output = - . = 2 - - s
samples. we need to somehow e e

compute values for the image in = input sample points « oulput sample points
oecon e stiiples. e pixel- Figure 4.37. The sample locations for the input and
dropping algorithm gives us 0N€ gutput grids in resampling a 12 by 9 image to make
way to do this: just take the anB8by&one.
value of the closest sample in
the input image and make that the output value, This is exactly equivalent to
reconstructing the image with a |-pixel-wide box filter and then point sampling.
Of course, if the main reason for choosing pixel dropping or other very sim-
ple filtering is performance, one would never implement that method as a special
case of the general reconstruction-and-resampling procedure. In fact, because
of the discontinuities, it's difficult to make box filters work in a general frame-
work. But, for high-guality resampling. the reconstruction/sampling framework
provides valuable flexibility,

4.4. Signal Processing for Images 101

To work out the algorithmic details it's simplest 1o drop down to 1D and dis-
cuss resampling a sequence. The simplest way to write an implementation is in
terms of the reconstruct function we defined in Section 4.2.5.

function resamplei{sequence a, float . float Ax, int n, filter f)
creale sequence b of length n
fori=0wn-1do
bli] = reconstruct{a, f,rp + idx)
return b

The parameter xy gives the position of the first sample of the new sequence in
terms of the samples of the old sequence. That is, if the first output sample falls
midway between samples 3 and 4 in the input sequence, &y is 3.5,

This procedure reconstructs a continuous image by convolving the input se-
guence with a continuous filter and then point samples it. That’s not (o say that
these two operations happen sequentially—the continuous function exists only in
principle and its values are computed only at the sample points. But mathemati-
cally, this function computes a set of point samples of the function a = f.

This point sampling seems wrong, though, because we just finished saying
that a signal should be sampled with an appropriate smoothing filter to avoid
aliasing., We should be convolving the reconstructed function with a sampling
filter g and point sampling g = (f * a). But since this is the same as (g + f) * a,
we can roll the sampling filter together with the reconstruction filter; one convo-
lution operation i all we need (Figure 4.38), This combined reconstruction and
sampling filter is known as a resampling filter.

g === |~

> ., lﬁmm
wd

=

Figure 4.38. Resampling Imvolves filtering for reconstruction and for sampling. Since two
convolution filters applied in sequence can be replaced with a single filter, we only need ane
rasampling filter, which serves the roles of reconstruction and sampling.

Al

102 4, Signal Processing

When resampling images, we usually specily a source recrangle in the units of
the old image that specifies the part we want to keep in the new image. For exam-
ple, using the pixel sample positioning convention from Chapter 3, the rectangle
we'd use to resample the entire image is (—0.5, n — 0.5) x (0.5, n — 0.5),
Given a source rectangle (xp, 75) % (. yn), the sample spacing for the new im-
age is Ar = (xp — 2] /nf™ in 2z and Ay = (yn — ye)/n}™ in y. The lower left
sample is positioned at (iry + Az /2, 4 + Ay /2),

Modifying the 1D pseudocode to use this convention, and expanding the call
to the reconstruct function into the double loop that is implied, we arrive at:

function resample(sequence a, Aoat oy, Aoat xy, int n, filter f)
create sequence b of length n
r = fradius
£Ip = I <+ M{E
fori=0ton—1do
=10
T =1xq+ tAr
forj=[z—r|to|z+r|do
s=s+alj]f(x-j)
bli] = s
return
This routine contains all the basics of resampling an image, One last issue that
remains to be addressed is what to do at the edges of the image. where the simple
version here will access beyond the bounds of the input sequence. There are
several things we might do:

e lust stop the loop at the ends of the sequence. This is equivalent to padding
the image with zeros on all sides;

e Clip all array accesses to the end of the sequence—that is, return a[0] when
we would want to access a[—1]. This is equivalent to padding the edges of
the image by extending the last row or column;

= Modify the filter as we approach the edge so that it does not extend beyond
the bounds of the sequence.

The first option leads to dim edges when we resample the whole image, which
is not really satisfactory. The second option is easy to implement; the third is
probably the best performing. The simplest way o modify the filter near the edge
of the image is to renarmalize it; divide the filter by the sum of the part of the filter
that falls within the image. This way, the filter always adds up to | over the actual
image samples, so it preserves image intensity. For performance, it is desirable

4.4, Signal Processing for Images 103

mnsﬂmp!a . . -

radius 1 radius 2 radius 3

upﬂﬂmpla . . .

Figure 4.39. The effects of using different sizes of a filter for upsampling (entarging) or
downsampling (reducing) an image.

to handle the band of pixels within a filter radius of the edge {which require this
renormalization) separately from the center (which contains many more pixels
and does not require renormalization),

The choice of filter for resampling is important, There are two separate 1ssues:
the shape of the filter and the size (radius). Beecause the filter serves both as a
reconstruction filter and a sampling filter, the requirements of both roles affect
the choice of filter. For reconstruction, we would like a filter smooth enough 1o
avoid aliasing artifacts when we enlarge the image, and the filter should be ripple-
free. For sampling, the filter should be large enough to avoid undersampling and
smooth enough to avoid moiré artifacts. Figure 4,39 illustrates these two different
needs.

Generally we will choose one filter shape and scale it according to the relative
resolutions of the inpat and output. The lower of the two resolutions determines
the size of the filter: when the output is more coarsely sampled than the input
{downsampling, or shrinking the image), the smoothing required for proper sam-
pling is greater than the smoothing required for reconstruction, so we size the fil-
ter according to the output sample spacing (radius 3 in Figure 4.39), On the other
hand, when the output is more finely sampled (upsampling, or enlarging the im-
age) then the smoothing required for reconstruction dominates (the reconstructed
function is already smooth enough to sample at a higher rate than it started),
so the size of the filter is determined by the input sample spacing (radius 1 in
Figure 4.39).

Choosing the filter itself is a tradeoff between speed and quality. Common
choices are the box filter (when speed is paramount), the tent filter (moderate
quality), or a piecewise cubic (excellent quality). In the piecewise cubic case, the

104 4. Signal Procassing

¥

Figure 4.40. Resampling an image using a separable approach.

degree of smoothing can be adjusted by interpolating between fi and fe; the
Mitchell-Netravali filter is a good choice.

Just as with image filtering, separable filters can provide a significant speed-
up. The basic idea is to resample all the rows first, producing an image with
changed width but not height, then to resample the columns of that image to
produce the final result (Figure 4.40). Modifying the pseudocode given earlier so
that it takes advantage of this optimization is reasonably straightforward,

4.5 Sampling Theory

If you are only interested in implementation, you can stop reading here; the al-
gorithms and recommendations in the previous sections will let you implement
programs that perform sampling and reconstruction and achieve excellent results,
However, there is a deeper mathematical theory of sampling with a history reach-
ing back to the first uses of sampled representations in telecommunications. Sam-
pling theory answers many questions that are difficult to answer with reasoning
based strictly on scale arguments.

But most important, sampling theory gives valuable insight into the workings
of sampling and reconstruction. It gives the student who learns it an extra set of
intellectual tools for reasoning about how to achieve the best results with the most
efficient code.

4.5. Sampling Theory 105

Figure 4.41. Approximating a sguare wave with finite sums of sines,

451 The Fourier Transform

The Fourier transform, along with convolution, is the main mathematical concept
that underlies sampling theory. You can read about the Fourier transform in many
math books on analysis, as well as in books on signal processing.

The basic idea behind the Fourier transform is 1o express any function by
adding together sine waves (sinusoids) of all frequencies. By vsing the appropri-
ate weights for the different frequencies, we can arrange for the sinusoids o add
up to any (reasonable) function we want.

As an example, the square wave in Figure 4.41 can be expressed by a sequence
of sine waves;

(= =}

4
E — gin 2rn.
mr

n=1.14,0,...

This Fourier series starts with a sine wave (sin 2mz) that has frequency 1.0—same
as the square wave—and the remaining terms add smaller and smaller corrections
to reduce the ripples and, in the limit, reproduce the square wave exactly. Note
that all the terms in the sum have frequencies that are integer multiples of the
frequency of the sguare wave. This is because other frequencies would produce
results that don’t have the same period as the square wave.

A surprising fact is that a signal does not have to be periodic in order o be
expressed as a sum of sinusoids in this way: a non-periodic signal just requires
more sinusoids. Rather than summing over a discrete sequence of sinusoids, we
will instead integrate over a continuous family of sinusoids. For instance. a box

106 4, Signal Processing

il . W 4 . S
N L R N

Figure 4.42. Approximating a box function with integrals of cosines up 1o each of four cutolf
frequenaies,

function can be written as the integral of a family of cosine waves:

b
f el cos 2rier du. (4.5)
o M

This integral in Equation 4.5 is adding up infinitely many cosines, weighting
the cosine of frequency u by the weight (sinwu)/mu. The result, as we include
higher and higher frequencies, converges to the box function (see Figure 4.42).
When a function f is expressed in this way, this weight, which is a function of the
frequency u, is called the Fourier transform of f, denoted f. The function f tells
us how to build f by integrating over a family of sinusoids:

flz) = j: Flu)e? T dy, (4.6)

Equation 4.6 is known as the inverse Fourier transform (IFT) because it starts
with the Fourier transform of f and ends up with f.°

Note that in Equation 4.6 the complex exponential *™% has been substituted
for the cosine in the previous equation. Also, fisa complex-valued function.

INpe that the term “Fourier transform” is used both for the function f and for the operation thit
computes [from f. Unfortunately, this rather ambigoons usage is standarnd,

4.5. Sampling Theary 107

The machinery of complex numbers is required to allow the phase, as well as
the frequency, of the sinusoids to be controlled; this is necessary to represent any
functions that are not symmetric across zero. The magnitude of f is known as
the Fourier spectrum, and, for our purposes, this is sufficient—we won't need to
worry about phase or use any complex numbers directly.

It urns out that computing f from f looks very much like computing f
from f:

Fouy= f " Fa)e g, @7

Equation 4.7 is known as the (forward) Fourier rransform (FT). The sign in the
exponential is the only difference between the forward and inverse Fourier trans-
forms, and it is really just a technical detail. For our purposes, we can think of the
FT and IFT as the same operation.

Sometimes the f—f notation is inconvenient, and then we will denote the
Fourier transform of f by F{ f} and the inverse Fourier transform of f by F~'{ f}.

A function and its Fourier transform are related in many useful ways. A few
facts (most of them easy o verify) that we will use later in the chapter are:

o A function and its Fourier transform have the same squared integral:

[= [a

The physical interpretation is that the two have the same energy (Figure
4.43),

In particular, scaling a function up by o also scales its Fourier transform by
a. That is, Flaf} = aF{f}.

Stretching a function along the «c-axis squashes its Fourier transform along
the w-axis by the same factor (Figure 4.44):

F{flz/b)} = bf(be).

{The renormalization by b is needed to keep the energy the same.)

This means that if we are interested in a family of functions of different
width and height (say all box functions centered at zero), then we only
need to know the Fourier transform of one canonical function (say the box
function with width and height equal to one), and we can easily know the
Fourier transforms of all the scaled and dilated versions of that function,

f(x)

Figure 4.43, The Fourier
transform preserves the
squared integral of the
signal,

108 4. Signal Processing

f .

m“ l—ﬁu}
x u

fixi2g

I{x I} l ‘ |2f(au)| |

Figure 4.44. Scaling a signal along the x-axis in the space domain causes an inverse scala
along the w-axis in the frequency domain,

For example, we can instantly generalize Equation 4.5 to give the Fourier
transform of a box of width b and height a:

sin whu

II:r'ﬁ:rr-!ri.:

e The average value of f is equal to f{0). This makes sense since f(0) is sup-
posed to be the zero-frequency component of the signal (the DC component
if we are thinking of an electrical voltage).

o If fisreal (which it always is for us), f is an even function—that is, f(u) =
f(—u). Likewise, if f is an even function then f will be real (this is not
usually the case in our domain, but remember that we really are only going
to care about the magnitude of f).

4.5.2 Convolution and the Fourier Transfarm

One final property of the Fourier transform that deserves special mention is its
relationship to convolution (Figure 4.45). Briefly,

F{f*g} = fi

4.5. Sampling Theory 109

‘f ;
:Jyx e |1
|

* = f+0Q

I'-"[space domain ‘
l frequency domain 1
L]

%* ~fag

* = fg

Figure 4.45. A commutalive diagram o show visually the relationship between convalution
and muttiplication. If we multiply fand g in space, then transform to frequancy, we end up in
the same place as if we fransformed fand gto frequancy and then cormvolved them, Likewise,
it we convolve fand g in space and then transtorm into frequency, we end up in the same
place as if we transformed fand g to frequancy, then multiplied them,

The Fourier transform of the convolution of two functions is the product of the
Fourier transforms. Following the by now familiar symmetry,

f*a=F{fa}-

The convolution of two Fourier transforms is the Fourier transform of the product
of the two functions, These facts are fairly siraightforward to derive from the
definitions,

This relationship is the main reason Fourier transforms are useful in studving
the effects of sampling and reconstruction. We've seen how sampling, filtering,
and reconstruction can be seen in terms of convolution; now the Fourier transform
gives us a new domain—the frequency domain—in which these operations are
simply products.

453 A Gallery of Fourier Transforms

Mow that we have some facts about Fourier transforms, let’s look at some exam-
ples of individual functions. In particular, we'll look at some filters from Sec-
tion 4.3.1, which are shown with their Fourier transforms in Figure 4.46. We have
already seen the box function:

}-{fhm} =

The function® sinx/z is important ennugh to have its own name, sing .

8in T

= SHIC T,

Wou may notice thit gin w7 1s undefined for u = 0. 1t iz, however, continuous across zem,
aned we take it 65 understood that we use the limiting valee of this ratio, 1, atw = 0.

110 4. Signal Processing

Foel %) [‘
=1 x_'_ 1
fanel®) 1 sinc®(u) 1
/\ .
_.1 - i -4 - 4
falx) 1T ; sinch(u) 1
T | T
= L -4, 4
a1 ¥3z f{2nu) 1
-1 = L+ 4

Figure 4.46. The Fourier transforms of the box, tent, B-spline, and Gaussian fitters.

The tent function is the convolution of the box with itself, so its Fourier trans-
form is just the square of the Fourier transform of the box function:

. 3
Entwe
Flfem} = G sinc?

T,
We can continue this process to get the Fourier transform of the B-spline filter
(see Exercise 3):

sin® ru

Flfa}l = gy = sinetru.

The Gaussian has a particularly nice Fourier transform:
Fifo} =2,

It is another Gaussian! The Gaussian with standard deviation 1.0 becomes a Gaus-
sian with standard deviation 1 /2.

1

4.5. Sampling Theory 1M1

4.5.4 Dirac Impulses in Sampling Theory

The reason impulses are useful in sampling theory is that we can use them to talk
about samples in the context of continuous functions and Fourier transforms. We
represent a sample, which has a position and a value, by an impulse translated
to that position and scaled by that value. A sample at position o with value f is
represented by bé(x — a). This way we can express the operation of sampling the
function f(x) at a as multiplying f by 8{x — a). The result is f(a)d(x — a).

Sampling a function at a series of equally spaced points is therefore expressed
as multiplying the function by the sum of a series of equally spaced impulses,
called an impulse train (Figure 4.47). An impulse train with period T, meaning
that the impulses are spaced a distance T apart i5

o

sr(z) = 2 dlx — Ti).

i=—n0

The Fourter transform of & 15 the same as s1: a sequence of impulses at all
integer frequencies. You can see why this should be true by thinking about what
happens when we multiply the impulse train by a sinusoid and integrate. We wind
up adding up the values of the sinusoid at all the integers. This sum will exactly
cancel to zero for non-integer frequencies, and it will diverge to +oo for integer
frequencies.

Because of the dilation property of the Fourier transform, we can guess that
the Fourier transform of an impulse train with period 7' (which is like a dilation
of &1) is an impulse train with period 1,7, Making the sampling finer in the space
domain makes the impulses farther apart in the frequency domain.

51“-'1

\”’”1 ~ 11711

X u

0
f., izl Salu)

| |

01* 01 U

Figure 4.47. |Impulse trains. The Fourer transform of an impulse train is another impulse
train, Changing the pariod of the impulse train in space causes an inverse change in the
periad In frequency.

112 4. Signal Processing

45,5 Sampling and Aliasing

Now we have built the mathematical machinery we need to understand the sam-
pling and reconstruction process from the viewpoint of the frequency domian.
The key advantage of introducing Fourier transforms is that it makes the effects
of convolution filtering on the signal much clearer, and it provides more precise
explanations of why we need to filter when sampling and reconstructing.

We start the process with the original, continuous signal. In general its Fourier
transform could include components at any frequency, although for most kinds of
signals (especially images). we expect the content to decrease as the frequency
gets higher. Images also tend to have a large component at zero frequency—
remember that the zero-frequency, or DC, component is the integral of the whole
image, and since images are all positive values this tends to be a large number.

Let's see what happens to the Fourier transform if we sample and reconstruct
without doing any special filtering (Figure 4.48). When we sample the signal, we
maodel the operation as multiplication with an impulse train; the sampled signal is
far. Because of the multiplication-convolution property, the FT of the sampled
signal is jt St = f *&qpT.

| [N
% I

Figure 4.48. Sampling and reconstruction with no filtering. Sampling produces alias spectra
that overlap and mix with the base spactrum. Reconstruction with a box filter collects even
maora information from the alias spectra. The result is a signal that has serious aliasing
artifacts.

4.5. Sampling Theory 113
Recall that § is the identity for convolution. This means that

(f*S”T][U.:I = Z f-[”_'n'-lu'“f'};

f==nC

that is, convolving with the impulse train makes a whole series of equally spaced
copies of the spectrum of f. A good intuitive interpretation of this seemingly odd
result is that all those copies just express the fact (as we saw back in Section 4.1.1)
that frequencies that differ by an integer multiple of the sampling frequency are
indistinguishable once we have sampled—they will produce exactly the same set
of samples. The original spectrum is called the base spectrum and the copies are
known as alias spectra.

The trouble begins if these copies of the signal’s spectrum overlap, which will
happen if the signal contains any significant content bevord half the sample fre-
quency. When this happens, the spectra add, and the information about different
frequencies is irreversibly mixed up. This is the first place aliasing can occur, and
if it happens here, it's due to undersampling—using too low a sample frequency
for the signal.

Suppose we reconstruct the signal using the nearest-neighbor technique. This
is equivalent o convolving with a box of width 1. (The discrete-continuous con-
volution used to do this 15 the same as a continuous convolution with the series
of impulses that represent the samples.) The convolution-multiplication property
means that the spectrum of the reconstructed signal will be the product of the
spectrum of the sampled signal and the spectrum of the box. The resulting recon-
structed Fourier transform contains the base spectrum (though somewhat attenu-
ated at higher frequencies), plus attenuated copies of all the alias spectra. Because
the box has a fairly broad Fourier transform, these attenuated bits of alias spectra
are significant, and they are the second form of aliasing, due 1o an inadequate
reconstruction filter, These alias components manifest themselves in the image as
the pattern of squares that is characteristic of nearest-neighbor reconstruction.

Preventing Aliasing in Sampling

To do high guality sampling and reconstruction, we have seen that we need 1o
choose sampling and reconstruction filters appropriately. From the standpoint of
the frequency domain, the purpose of lowpass filtering when sampling is to limit
the frequency range of the signal so that the alias spectra do not overlap the base
spectrum. Figure 4.49 shows the effect of sample rate on the Fourier transform of
the sampled signal. Higher sample rates move the alias spectra farther apart, and
eventually whatever overlap is lefi does not matter.

114 4. Signal Processing

Figure 4.49. The effect of sample rate on the frequency spectrum of the sampled signal.
Higher sampie rates push the copies of the spectrum apart, reducing problems caused by
ovariap.

The key criterion is that the width of the spectrum muost be less than the dis-
tance between the copies—that is, the highest frequency present in the signal
must be less than half the sample frequency. This is known as the Nvgueist crire-
rion, and the highest allowable frequency is known as the Nvguist frequency or
Nyguist limit. The Nyvguist-Shannon sampling theorem states that a signal whose
frequencies do not exceed the Nyquist limit (or, said another way, a signal that is
bandlimited to the Nyquist frequency) can, in principle, be reconstructed exactly
from samples.

With a high enough sample rate for a particular signal, we don’t need o use
a sampling filter. But il we are stuck with a signal that contains a wide range of
frequencies (such as an image with sharp edges in it), we must use a sampling
filter to bandlimit the signal before we can sample it Figure 4.50 shows the
effects of three lowpass (smoothing) filters in the frequency domain, and Figure
4,5] shows the effect of using these same fillers when sampling. Even if the
spectra overlap without filtering, convolving the signal with a lowpass filter can
narrow the spectrum enough to eliminate overlap and produce a well-sampled

4.5. SBampling Theory 115

rmild béur

= o W=

Figure 4.50. Applying lowpass (smoothing) filters narrows the frequancy spectrum of a
signal.

Mo

sEvETE
aliasing

v

sOmE
i sdasing

ML AN

rrinirmal
akasing

samp. no libar

samp.; mild blur

samp,: strong bl

- 1] -

Figure 4.51. How the lowpass filers from Figure 4.50 prevent aliasing during sampling.
Lowpass filtering narrows the spectrum so that the coples overap less, and the high fre-
quancies from the alias spectra interfere l2ss with the base spectrum.

116 4. Signal Processing

bong recnn.

sant raoon,

Bsglinag racan,

Figura 4.52. The effects of different reconstruction filters in the frequency domain. A
good reconstruction filker altenuates the alias specira effectively while presarving the base
spectrum.

o —-

Figure 4.53. Resampling viewed in the frequency domain. The resampling filter both
reconstructs the signal (removes the alias spectra) and bandiimils it (reduces its width) for
sampling at the new rate,

4.5. Sampling Theory 117

representation of the filtered signal. Of course, we have lost the high frequencies,
but thats better than having them get scrambled with the signal and turm into
artifacts.

Preventing Aliasing in Reconstruction

From the frequency domain perspective, the job of a reconstruction filter is to re-
move the alias spectra while preserving the base spectrum. In Figure 4.48, we can
see that the crudest reconstruction filter, the box, does attenuate the alias spec-
tra, Most important, it completely blocks the DC spike for all the alias spectra,
This is a characteristic of all reasonable reconstruction filters: they have zeroes
in frequency space at all multiples of the sample frequency. This turns out to be
equivalent to the ripple-free property in the space domain,

So a good reconstruction filter needs to be a good lowpass filter, with the
added requirement of completely blocking all multiples of the sample frequency.
The purpose of using a reconstruction filter different from the box filter is to more
completely eliminate the alias spectra, reducing the leakage of high-frequency ar-
tifacts into the reconstructed signal, while disturbing the base spectrum as little
as possible. Figure 4.52 illustrates the effects of different filters when used dur-
ing reconstruction. As we have seen, the box filter is quite “leaky” and results in
plenty of artifacts even if the sample rate is high enough. The tent filter, resuli-
ing in linear interpolation, attenuates high frequencies more, resulting in milder
artifacts, and the B-spline filter is very smooth, controlling the alias spectra very
effectively. It also smooths the base spectrum some—this is the tradeoff between
smoothing and aliasing that we saw earlier,

Preventing Aliasing in Resampling

When the operations of reconstruction and sampling are combined in resampling,
the same principles apply, but with one filter doing the work of both reconstruction
and sampling. Figure 4.53 illustrates how a resampling filter must remove the
alias spectra and leave the spectrum narrow enough o be sampled at the new
sample rate.

456 |deal Filters vs Useful Filters

Following the frequency domain analysis to its logical conclusion, a filter that is
exactly a box in the frequency domain is ideal for both sampling and reconstruc-
tion. Such a filter would prevent aliasing at both stages without diminishing the
frequencies below the Nyquist frequency at all.

118 4. Signal Processing

Recall that the inverse and forward Fourier transforms are essentially iden-
tical, so the spatial domain filter that has a box as its Fourier transform is the
function sin wz/mx = sine .

However, the sinc filter is not generally used in practice, either for sampling or
for reconstruction, because it is impractical and because, even though it is optimal
according to the frequency domain criteria, it doesn’t produce the best results for
many applications.

For sampling, the infinite extent of the sinc filter, and its relatively slow rate
of decrease with distance from the center, is a lability, Also, for some kinds of
sampling, the negative lobes are problematic. A Gaussian filter makes an excel-
lent sampling filter even for difficult cases where high-frequency patterns must be
removed from the input signal, because its Fourier transform falls off exponen-
tially, with no bumps that tend to let aliases leak through. For less difficult cases,
a tent filter generally suffices,

For reconstruction, the size of the sinc function again creates problems, but
even more importantly, the many ripples create “ringing” artifacts in reconstructed
signals.

Exercises

1. Show that discrete convolution is commutative and associative. Do the
same for continuous convolution,

2. Discrete-continuous convolution can't be commutative, because its argu-
ments have two different types. Show that it is associative, though.

3. Prove that the B-spline is the convolution of four box functions,

4. Show that the “flipped” definition of convolution is necessary by trying to
show that convolution is commutative and associative using this (incorrect)
definition (see the footnote on page B0):

(ax)il =Y aljlbli +]

b

5. Prove that F{f « g} = fjand f » § = F{fg}.

S
Linear Algebra

Perhaps the most universal tools of graphics programs are the matrices that
change or fransform points and vectors. In the next chapter, we will see
how a vector can be represented as a matrix with a single column, and how
the vector can be represented in a different basis via multiplication with a
square matrix. We will also describe how we can use such multiplications to ac-
complish changes in the vector such as scaling, rotation, and translation.
In this chapter, we review basic linear algebra from a geometric perspective.
This chapter can be skipped by readers comfortable with linear algebra.
However, there may be some enlightening tidbits even for such readers, such as
the development of determinants and the discussion of singular and eigenvalue
decomposition.

5.1 Determinants

We usually think of determinants as arising in the solution of linear equations.
However, for our purposes, we will think of determinants as another way 1o mul-
tiply vectors. For 2D vectors a and b, the determinant |ab)| is the area of the
parallelogram formed by a and b (Figure 5.1). This is a signed arca, and the
sign is positive if a and b are right-handed and negative if they are left-handed.
This means |ab] = —|ba|. In 2D we can interpret “right-handed” us meaning we
would rotate the first vector counterclockwise to close the smallest angle 1o the
second vector, In 3D the determinant must be taken with three vectors at a time,
For three 3D vectors, a, b and ¢, the determinant jabe| is the signed volume of
the parallelepiped (3D parallelogram; a sheared 3D box) formed by the three vec-

119

Figure 51. The signed
area of the parallelogram is
labl, and in this case the
araa is positive,

Figure 5.2. The
signed volume of the paral-
lelepiped shown is denoted
by the determinant |abc),
and In this case the voluma
ia positive becauses the vac-
tors form a right-handed ba-
Sis.

Figure 5.3. Scaling a par-
alielogram along one dirac-
fion changes the area in the
same proportion.

Lt/

Figure 5.4, Shearing
a paralielogram does not
change its area, These
four paralielograms have
the same length base and
thus the same area.

Figure 55. The geametry
behind Equation 5.1. Both
of the paralislograms on the
left can be shearad to cover
the single parallalogram on
the right,

120 5. Linear Algebra

tors (Figure 5.2).To compute a 2D determinant, we first need to establish a few
properties of the determinant. We note that scaling one side of a parallelogram
scales its area by the same fraction (Figure 5.3);

|(ka)b| = [a(kb)| = k|ab].

Also, we note that “shearing”™ a parallelogram does not change its area (Fig-
ure 5.4);
|{a+ kb)b| = |alb + ka)| = |ab|.

Finally, we see that the determinant has the following property:
la(b + ¢)| = |ab| + |ac], (5.1

because as shown in Figure 5.5 we can “slide” the edge between the two parallel-
ograms over to form a single parallelogram without changing the area of either of

the two original parallelograms.
Now let’s assume a Cartesian representation for a and by

|ab] = |[{x.x + va¥) {zex + ¥)|
= T2y |XX| + Tupn|XY] + vazs|¥X| + vatn|yy|
= To25(0) + zutn(+1) + gazp(—1) + yapnl0)

= Lalfs — YaLh-

This simplification uses the fact that |[vv| = [for any vector v, because the
parallelograms would all be collinear with v and thus without area,

In three dimensions, the determinant of three 3D vectors a, b, and e is denoted
|abe|. With Cartesian representations for the vectors, there are analogous rules
for parallelepipeds as there are for parallelograms, and we can do an analogous
expansion as we did for 2D:

labe| = |(zaX + Yo + za2)(TeX + Y + 28) (X + Yoy + 2.2)|

= Tallh¥e — Ta2blle — YaThZe + Yo 20l + 2aEhle — ZaWole.

As you can see, the computation of determinants in this fashion gets uglier as the
dimension increases. We will discuss less error-prone ways to compute determi-
nants in Section 5.2.3,

Dieterminants arise naturally when computing the expression for one vector as
a linear combination of two others—for example, if we wish to express a vector
¢ as a combination of vectors a and b:

¢ =n.a-+ b.b.

5.2, Matrices 121

Figure 5.6. On the left, the vector & can be represented using two basls vectors as a.a +
beb. On tha right, wa see that the parallelogram formed by & and ¢ is a sheared version of
the parallelogram formed by b.b and a.

We can see from Figure 5.6 that

because these parallelograms are just sheared versions of each other. Solving for
b, yields

cal
b = —.
© ba
An analogous argument yields
be|
e = —,
|bal

This is the two-dimensional version of Cramer's rule which we will revisit in
Section 5.2.5.

5.2 Matrices

A matrix is an array of numeric elements that follow certain arithmetic rules, An
example of a matrix with two rows and three columns is:

1.7 1.2 42
3.0 45 -T2

122 5, Linear Algebra

Matrices are frequently used in computer graphics for a variety of purposes in-
cluding representation of spatial transforms. For our discussion, we assume the
elements of a matrix are all real numbers. This chapter describes both the mechan-
ics of matrix arithmetic and the determinant of “square” matrices, i.e., matrices
with the same number of rows as columns.

521 Matrix Arithmetic

A matrix times a constant results in a matrix where each element has been multi-
plied by that constant, e.g.,

1 —4] [2 -

2[3 2]—_5 4]'

Mairices also add element by element, e.g.,
1 4] 2 2] [3 -

3 2R 2| 4°

For matrix multiplication, we “multiply” rows of the first matrix with columns of
the second matrix:

iy flimm | [Pur s Dagr eew o Pag]
: Brp: s | By | ioes 1B : : ;
1 Qi : : Pl =P - Gl Pis
: [SR i) [NER SR S : :
B sl B wx Doy s Ped

So the element p;; of the resulting product is
Pij = il + digba; + - - + Aimbm;.

Note that taking a product of two matrices is only possible if the number of
columns of the left matrix is the same as the number of rows of the right ma-
trix. For example,

01 0 1 2 3
23[3'{32]=121?222?.
45 3 14 33 42 m

Matrix multiplication is nor commutative in most instances:

AB # BA. (5.2)

5.2. Matrices 123

Also, if AB = AC. it does not necessarily follow that B = C. Fortunately,
matrix multiplication is associative and distributive:

(AB)C = A(BC),
A(B+C)=AB+ AC,
(A +B)C = AC + BC.

In graphics, we use a square matrix to transform a vector represented as a mairix.
For example if you have a 2D vector a = (z,,,) and want to “reflect” it about
the y axis to form vector a’ = [—x,, ya), you can use a product of a two by two
matrix and a two by one matrix, often called a “column vector”. The operation in

matrix form is:
=1 O} |%a| _ |—%a
0 1 |ya| | wal’

We can get the same result by “premultiplying” with a “row vector™;

o wl|[Tg 3] == wl.

These days. postmultiplication using column vectors is fairly standard, but in
many older books and systems you will run across row vectors and premulti-
plication. The only difference is that the transform matrix must be replaced with
its transpose. The transpose A7 of a matrix A is one whose rows are switched

with its columns, e.g.,
a1 T
é ﬁ :[1 3 5]
5 6 2 46

Note that in the previous reflection example, the transpose of the matrix is the
same as the matrix. Such matrices are called symmetric. Note that the transpose
of a product of two matrices obeys:

(AB)T =B"AT.

We would like a matrix analog of the inverse of a real number. We know the
inverse of a real number x is 1/z and that the product of = and its inverse is 1.
We need a matrix I that we can think of as a “matrix one.” This exists only for
square matrices and is know as the identity martrix; it consists of ones down the
“diagonal” and zeroes elsewhere. For example, the four by four identity matrix is

1 0 00
o100
“lo o 10

0 0 01

Figure 5.7. The 2D de-
terminant in Equation 5.3 is
the area of the paralielo-
gram formed by the 2D vec-
tors.

124 5. Linear Algebra

The identity matrix is a special case of a diagonal matrix, where all non-zero
elements are along the diagonal. The diagonal are those elements whose column
index equals the row index counting from the upper left. The imverse matrix A"
of a matrix A is the matrix that ensures AA ' = I. For example,

1 2)7 _[-20 0] 1 2][-20 10] _[1 0
3 4 T | 15 —05 MR 13 4l | L5 —6sF 1o x]®

Note that the inverse of A" is A. S0 AA™" = A~'A = 1. Also note that the
inverse of a product of two matrices is

(AB)"'=B"'A"L,

We will return to inverses later in the chapter.

5.2.2 Vector Operations in Matrix Form

We can use matrix formalism to encode vector operations for vectors when using
Cartesian coordinates; if we consider the result of the dot product a one by one
matrix, it can be written:

a-b=a’b.

For example, if we take two 3D vectors we get:

Iy

[#a o 2] [m] = [zazy + yats + 2ap) .
Zy

5.2.3 Matrices and Determinants

Recall from Section 5.1 that the determinant takes n n-dimensional vectors and
combines them to get a signed n-dimensional voelume of the n-dimensional par-
allelepiped defined by the vectors. For example, the determinant in 2D is the area
of the parallelogram formed by the vectors. We can use matrices to handle the
mechanics of computing determinants.

If we have 2D vectors r and s, we denote the determinant |rs|; this valoe is
the signed area of the parallelogram formed by the vectors. Suppose we have
two 2D vectors with Cartesian coordinates (a, b) and (A, B) (Figure 5.7). The
determinant can be written in terms of column vectors or as a shorthand:

ol [l=F 3

b B =aB — Ab. (3.3

5.2. Matrices 125

Mote that the determinant of a matrix is the same as the determinant of its trans-
pose:
a b

A B

a Al
b Bl

‘ = aff — Ab.

This means that for any parallelogram in 2D there is a “sibling” parallelogram that
has the same area but a different shape (Figure 5.8). For example the parallelo-
gram defined by vectors (3, 1) and (2, 4) has area 10, as does the parallelogram
defined by vectors (3,2) and (1,4).

The geometric meaning of the 3D determinant is helpful in seeing why certain
formulas make sense. For example, the equation of the plane through the points
(& 45, 24) fori =0,1,21s

r=Ip T=—I IT—1iy
Yy—to ¥—t y—w|=0
f—23 £—21 2=z

Each column is a vector from point (r,, y,, z;) to point (x, y,). The volume of
the parallelepiped with those vectors as sides is zero only if {z,y, z) is coplanar
with the three other points. Almost all equations involving determinants have
similarly simple underlying geometry.

As we saw earlier, we can compute determinants by a brute force expansion
where most terms are zero, and there is a great deal of bookkeeping on plus and
minus signs, The standard way to manage the algebra of computing determinants
is 10 use a form of Laplace's expansion. The key part of computing the deter-
minant this way is to find cafactors of various matrix elements. Each element
of a square matrix has a cofactor which is the determinant of a matrix with one
fewer row and column possibly multiplied by minus one. The smaller matrix is
obtained by eliminating the row and column that the element in question is in. For
example, for a 10 by |0 matrix, the cofactor of ag; is the determinant of the 9 by
% matrix with the 8th row and 2nd column eliminated. The sign of a cofactor is
positive if the sum of the row and column indices is even and negative, otherwise.
This can be remembered by a checkerboard pattern:

I+ 1 4+
D il e
=g =
+ |

Figure 5.8. The sibling
parallelogram has the same
area as the paraflelogram in
Figure 5.7,

126 5. Linear Algebra

So, for a four by four matrix,

a1; o232 a1z g
A= |92 @22 Gz G
d31 @3z dzy Qg
@y gz d4a dgy

The cofactors of the first row are
tgg dzg g asy a3 O
aj; = |63z 0z3 aag|, 0= —|asy gaz ay,
Gq2 G434 @41 gy G4y
gy gz dzg 3y @go oy
ajy3 = |e; as2 asa, ajy=—|6; a3z ags|.
4] 43 G4 o4y flgs fga

The determinant of a matrix is found by taking the sum of products of the elements
of any row or column with their cofactors. For example, the determinant of the
four by four matnix above taken about its second column is

|A| = aizaf, + 62203, + azaah, + agaj,y.

We could do a similar expansion about any row or column and they would all
yield the same result. Note the recursive nature of this expansion.

A concrete example for the determinant of a particular three by three malrix
by expanding the cofactors of the first row is

g 1 2

4 5 4 5 3 4
SEEERERE
6 7 8 7 8 6 8 6 7

= 0{32 — 35) — 1(24 — 30) + 2(21 — 24)

=10,
We can deduce that the volume of the parallelepiped formed by the vectors defined
by the columns (or rows since the determinant of the transpose is the same) is
zero. This is equivalent to saying that the columns (or rows) are not linearly
independent. Note that the sum of the first and third rows is twice the second row,
which implies linear dependence,

524 Computing Inverses

Determinants give us a tool to compute the inverse of a matrix. It is a very inef-
ticient method for large matrices, but often in graphics our matrices are small. A

5.2. Matrices 127

key 1o developing this method is that the determinant of a matrix with two iden-
tical rows 1% zero, This should be clear because the volume of the n-dimensional
parallelepiped is zero if two of its sides are the same. Suppose we have a four by
four matrix A and we wish to find its inverse A", The inverse is
ajy aj Gy e
=1 L iy Gy Qi iy
|A] |a3s @iy a3z afs
ajy G5y gy Qg
Mote that this is just the transpose of the matrix where elements of A are replaced
by their respective cofactors multiplied by the leading constant (1 or -1). This
matrix is called the adjoinr of A. The adjoint is the transpose of the cafacior
matrix of A. We can see why this is an inverse. Look at the product AA '
which we expect to be the identity. If we multiply the first row of A by the first
column of the adjoint matrix we need to get |A| (remember the leading constant
above divides by |Al:

611 G2 gy o fafy - - |A
; : 4 s
12
iy
aig
This is true because the elements in the first row of A are multiplied exactly
by their cofactors in the first column of the adjoint matrix which is exactly the
determinant. The other values along the diagonal of the resulting matrix are |A|
for analogous reasons. The zeros follow a similar logic:
afy
gy g oy day "TE S [
- i 5 ui:
13
1y

MNote that this product is a determinant of sosme matrix:
A1) + 220y, + axseyy + a6y

The matrix in fact is

291 gz fgy G

3y G2 dzy iy

I3y fgn d3a 34

147 flyz gy 244
Because the first two rows are identical, the matrix is singular, and thus, its deter-
minant is zero,

128 5. Linear Algebra

The argument above does not apply just to four by four matrices; using that
size just simplifies typography. For any matrix, the inverse is the adjoint matrix
divided by the determinant of the matrix being inverted. The adjoint is the trans-
pose of the cofactor matrix, which is just the matrix whose elements have been
replaced by their cofactors. For example, the inverse of a three by three matrix
whose determinant is 6 is

[13 4 1 2 1 2
25| |25 |34
-1

&4y _1_14'12._12
e o8l TE[s Jos Thos
13 11 i1
02 “lo2 fos

o L T

=s|-5 5 2|

|z 2 2

You can check this yourself by multiplying the matrices and making sure you get
the identity.

5.2.5 Linear Systems

We often encounter linear systems in graphics with “n equations and n unknowns,”
for example (n = 3),

Iz+Ty+22= 4,

2r—dy -3z = -1,

Sr4+y+ 2= 1,

Here r, y and = are the “unknowns” for which we wish to solve. We can write

this in matrix form:
3 T 21 |z 4
2 —4 =3 (gl=[-1].
5 2 1| |= 1

A common shorthand for such systems is Ax = b where it is assumed that A is
a square matrix with known constants, x is an unknown column vector (with ele-
ments r, y, and z in our example), and b is a column matrix of known constants,

5.2. Matrices 129

There are many ways to solve such systems, but for small systems we will
use Cramer's rule as we saw earlier in 2D from a geometric standpoint. Here, we
show this algebraically. The solution to the above equation is

407 2 3 2 3 7T 4
1 -4 -3 9 -1 -3 2 —4 -1
1 2 1 i 1 1 ; 3 2 1
=13 7 2 ¥ 13 7 2 * " 13 7 2
2 -4 -3 3 2y =iy g =4 =3
5 2 1 5 2 1 5 2 1

The rule here is to take a ratio of determinants, where the denominator is |A| and
the numerator is the determinant of a matrix created by replacing a column of A
with the column vector b. The column replaced corresponds to the position of
the unknown in vector x. For example, y is the second unknown and the second
column is replaced. Note that if |[A] = 0, the division is undefined and there is
no solution. This is just another version of the rule that if A is singular (zero
determinant) then there is no unique solution to the equations.

5.2.6 Eigenvalues and Matrix Diagonalization

Square matrices have eigenvalues and eigenvectors associated with them. The
eigenvectors are those non-zero vectors whose directions do not change when
multiplied by the matrix. For example, suppose for a matrix A and vector a, we
have
Aa =)\a. (5.4)

This means we have siretched or compressed a, but its direction has not changed.
The scalefactor A is called the eigenvalue associated with eigenvector a. Knowing
the eigenvalues and eigenvectors of matrices is helpful in a variety of practical
applications. We will describe them to gain insight into geometric transformation
matrices, and as a step toward singular values and vectors described in the next
section.

If we assume a matrix has at least one eigenvector, then we can do a standard
manipulation to find it. First, we make both sides the product of a square matrix
and 4 vector:

Aa = JMa, (5.5)

where 1 is an identity matrix. This can be rewritten

Aa—Ala=1(. {5.6)

130 5. Linear Algebra

Because matrix multiplication is distributive, we can group the matrices:
(A—A)a=0. (5.7)

This equation can only be true if the matrix (A — AI) is singular, and thus its
determinant is zero, The elements in this matrix are the numbers in A except
along the diagonal. For example, for a 2 by 2 matrix the eigenvalues obey

ap — A ap

gy ting:—= 2| * A (an + ag)A + (a0 — agzag) = 0. (5.8)

Because this is a quadratic equation, we know there are exactly two solutions for
A. These solutions may or may not be unique or real. A similar manipulation
tor an n by n matrix will yield an nth degree polynomial in A. Because it is
not possible, in general, to find exact explicit solutions of polynomial equations
of degree greater than four, we can only be guaranteed to find eigenvalues of
matrices 4 by 4 or smaller by analytic methods. For larger matrices, numerical
methods are the only option.

An important special case is eigenvalues of symmeiric matrices (where
A = A"). Here, it is known that the eigenvalues are real. If they are also dis-
tinct, their eigenvectors are mutually orthogonal, Such matrices can be put into
diagonal form: A= RDR, 5.9
where R is an orthogonal matrix and I is a diagonal matrix. Recall that an
orthogonal matrix might be better called an orthonormal matrix; its columns are
mutually orthogonal and the sum of the squares of the elements of each column
are one. The columns of R are the eigenvectors of A and the non-zero elements
of I are the eigenvalues of A. For example, given the matrix

21
=[]
the eigenvalues of A are the solutions to
X —-3A+1=0.

We approximate the exact values for compactness of notation:

_3+v6 _ [2618
IR T [V -5

Now we can find the associated eigenvector. The first is the nontrivial (not @ =
y = 1) solution to the homogeneous equation,

2 - 2618 1 x] [0
1 1-2618) ly] ~ [o]"

A

5.2. Matrices 131 i

This is approximately (x,y) = (0.8507,(.5257). Note that there are infinitely
many solutions paralle] to that 2D vector, and we just picked the one of unit length.
Similarly the eigenvector associated with Az is (@, y) = (—0.5257, 0.8507). This
means the diagonal form of A is (within some precision due to our numeric ap-
proximation):

2 1] _ [0.8507 -—0.5257] [2.618 O 0.8507 0.5257
1 1]~]0.5257 0.8507 0 0.382] |-0.5257 0.8507|"

We will revisit the geometry of this matrix as a transform in the next chapter.

5.2.7 Singular Value Decomposition

We saw in the last section that any symmetric matrix can be “diagonalized”. How-
ever, most matrices we encounter in graphics are not symmetric. Fortunately,
these matrices can be decomposed using singular value decomposition (SVID).
We take the matrix M and represent it as

M = USV,

where U and V are orthogonal and 8 is diagonal. The diagonal elements of S are
the singular values of M. There is a standard trick to computing the SVID. First
we define A = MM’ . We assume that we can perform a SVD on M:

A =MM" = (USV)(USV)T =usvVvTsu” = us?u”.

The substitution is based on the fact that (BC)? = CTB”, that the transpose of
an orthogonal matrix is its inverse, and the wranspose of a diagonal matrix is the
matrix itself. The beauty of this new form is that A is symmetric and US*U7 is
its eigenvalue diagonal decomposition, where S8* contains the eigenvalues. Thus,
we find that the singular values of a matrix are the square roots of the eigenvalues
of that matrix times its transpose. We now make this concrete with an example:

1 R (-
M_[u 1} A=MM _[1 1]_

We saw the eigenvalue decomposition for this matrix in the previous section. We
observe immediately

1 1] J0.BE07 —0.5257 |v2.618 0 v
0 1| |0.5257 0.8507 0 V0382

132 5. Linear Algebra

We can solve for V algebraically:
V=8"UTM:

The inverse of S is a diagonal matrix with the reciprocals of the diagonal elements
of 8. This yields

b iJ=vf5 alv

_|0.B50T —0.525T| |1.618 0 0.5257 0.8507
~ 10,5257 0.8507 0 0.618] |-0.8507 0.5257|"

This form used the standard symbol & for a singular value. Note that for a sym-
metric matrix, the eigenvalues and the singular values are the same (7; = A;).
Also note that the eigenvalue diagonalization and the SVD are the same. We will
examine the geometry of 5VD more in Section 6.1.6.

Frequently Asked Questions

= Why is matrix multiplication defined the way it is rather than just element
by element?

Element by element multiplication is a perfectly good way to define matrix mul-
tiplication, and indeed it has nice properties. However, in practice it is not very
useful. Ultimately most matrices are used to transform column vectors, e.g., in
3D you might have

b = Ma,

where a and b are vectors and M is a three by three matrix. To allow geometric
operations such as rotation, combinations of all three elements of a must go into
each element of b. That requires us to either go row-by-row or column-by-column
through M. That choice is made based on composition of matrices having the
desired property,
Mz(Ma) = (MaM, Ja

which allows us to use one composite matrix C = MaM, to transform our vector:
This is valuable when many vectors will be transformed by the same composite
matrix. So, in summary, the somewhat weird rule for matrix multiplication is en-
gineered to have these desired properties.

5.2, Matrices 133

« Sometimes | hear that eigenvalues and singular values are the same
thing and sometimes that one is the square of the other. Which is right?

If a real matrix M is symmetric, then its eigenvalues and singular values are the
same. If M is not symmetric, the matrix A = MM is symmetric and has real
eignenvalues. The singular values of M and M7 are the same and are the square
roots of the singular/eigenvalues of A. Thus, when the square root statement is
made, it is becavse two different matrices {(with a very particular relationship) are
being talked about: A = MM,

Notes

The discussion of determinants as volumes is based on A Vecror Space Approach
o Geometry (Hausner, 1998). Hausner has an excellenmt discussion of vector
analysis and the fundamentals of geometry as well. The geometric derivation
of Cramer’s rule in 2D is taken from Practical Linear Algebra: A Geometry Tool-
box (Farin & Hansford, 2004), That book also has geometric interpretations of
other linear algebra operations such as Gaussian elimination. The discussion of
eigenvalues and singular values is based primarily on Linear Algebra and its Ap-
plications {Strang, 1988). The example of SVD of the shear matrix is based on a
discussion in Compuier Graphics and Geometric Modeling (Salomon, 1999),

Exercises

1. Write an implicit equation for the 2D line through points (g,) and
{zy, 4) using a 2D determinant.

[

. Show that if the rows of a matrix are orthonormal, then so are the columns.
3. Show that the eigenvalues of a diagonal matrix are its diagonal elements,
4. Show that for a square matrix A, AA” is a symmetric matrix.

5. Show that for three 3D vectors a, b, ¢, the following identity holds: |abe| =
faxb) e

6. Explain why the volume of the tetrahedron with side vectors a, b, ¢ (see
Figure 5.2) is given by |abe|/6.

134 5. Linear Algebra

7. Given the (x,y) coordinates of the three vertices of a 2D triangle, explain
why the area is given by

Ip T Eg

W W W
| R (O |

- ¥

6

e

Transformation Matrices

In this chapter, we describe how we can use matrix multiplications to accomplish
changes in a vector such as scaling, rotation, and translation. We also discuss how
these transforms operate differently on locations (points), displacement vectors,
and surface normal vectors,

We will show how a set of points transforms if the points are represented as
offset vectors from the origin. So think of the image we shall use (a clock) as a
bunch of points that are the ends of vectors whose tails are at the origin,

6.1 Basic 2D Transforms

We can use matrices to change the components of a 2D vector. For example:

1y dqz| || _ 4T+ apgy

Az fzz| |¥ ax T + azy|
Such a transformation can change vectors in a variety of ways that are useful.
In particular, it can be used to scale, rotate, and shear. We will introduce more
general transformations later, but the basics of transformation are embodied in

the simple formula above. For our purposes, consider moving along the x-axis a
horizontal move, and along the y-axis, a vertical move,

135

136 6. Transformation Matrices

Figure 6.1. Scaling uniformly by half for each axis: The scale matrix has the proportion of
change in each of the diagonal slements and zeroes in the off-diagonal elements.

Figure 6.2. Scaling non-uniformly in x and 2 The scaling matrix is diagonal with non-equal
elements. Mote that the square outling of the clock becomes a rectangle and the circular
face becomes an ellipse.

6.1.1 Scaling

The most basic transform is a scale. This transform can change length and possi-
bly direction:

scale(s, 8y) = [? S::-] .

Note what this matrix does to a vector with Cartesian components (i, y):
|:3;.- L'l] [m] = [a::;]
0 &y ¥ syl
For example, the matrix that shrinks = and y uniformly by a factor of two is

{Figure 6.1)

scale(0.5, 0.5) = [“'5 i] .

0 0.5

8.1. Basic 2D Transforms 137

A maltrix which halves in the horizontal and increases to three-halves in the verti-
cal is (see Figure 6.2)

= g5 0
scalef(.5.1.5) = [0 I.EJ

6.1.2 Shearing

A shear is something that pushes things sideways, producing something like a
deck of cards across which you push your hand; the bottom card stays put and
cards move more the closer they are to the top of the deck. The horizontal and
vertical shear matrices are

5 1

shear-x{s) = [[ij ':J . shear-y(s) = [] HJ ;

For example, the transform that shears horizontally so that vertical lines become
45° lines leaning towards the right is (see Figure 6.3)

shedar-x(1) = E‘ }] .

Figure 6.3. An x shear matrix moves points to tha right in proportion to their p-coordinate.
Mow the square outling of the clock becomes a parallelogram and, a8 with sealing, the circular
face of the clock bacomes an allipse.

An analogous transform vertically is {see Figure 6.4)

1 0
shear-v(l) = [1 l] '
Note that the square outline of the sheared clock becomes a parallelogram. Also,
note that the circular face of the sheared clock looks like it could be an ellipse. In
fact it is, as will be evident when we discuss SVD.

i 138 6. Transformation Matrices

Figure 6.4. A yshear mairix moves paints up in propartion 1o their x-coordinate,

Another way to think of a shear is in terms of rotation of only the vertical
{or horizontal) axes. The shear transform that takes a vertical axis and tilts it
clockwise by an angle o is

1 tang
] T illF
Similarly, the shear matrix which rotates the horizontal axis counterclockwise by
angle ¢ is
1 0
tang 1]°
6.1.3 Rotation

Suppose we want to rotate a vector by an angle @ counterclockwise. First, suppose
we have a vector a = (i, y,), and we want to rotate it by an angle ¢ to get to
vector b = (g,). IF the vector a makes an angle o with the z-axis, and its
length is » = a2 + »2, then we know that by definition,

Ty = T COSIY,

Yo = rsina.

Figure 6.5. The geomeatry Because b is a rotation of a, it also has length v, Because it is rotated an angle
forExunian 6.4: ¢ from a, the angle b makes with the x-axis is (a + &) (Figure 6.5). From basic

6.1. Basic 2D Transiorms 138

trigonomelry we know that

ry = roos(o + @) = Feosacos g — 1 sin o sin g, 61
; (6.1)
Uy = rsm{n + :,-‘:} = I'SIN & COS ¢+ 7 O0S o S

Substituting the components in r, = ¥ coso and y, = rsino gives
o dh = Ty CO8h — Yadin g,

Uy = Yo GOS8 4 2 sined,

In matrix form, the equivalent transformation that takes a 1o b is

cosd —Sineg
sin cosad|

rotate(¢) = [

For example, a matrix that rotates vectors by 7/4 radians (45 degrees) 1s (sec

Figure 6.6)
t.‘{]ﬁ% —ﬁiu% _|0TOT 0707
.~sin§'- cos§| |0.TOT7 0.707]°
f
¥

J07 -707
JO07 707

Figure 6.6. A rotation by 45 degrees. Note that the rotation is counterclockwise and that
cos(45%) = sin(45%) = 707,

A matrix which rotates by m /6 radians (30 degrees) in the clockwise direction
is a rotation by — /6 radians in our framework (see Figure 6.7):

cos 5f —sin ¢ _[0.866 0.5]

1 =ar =n| = QRE
sin =& cod =+ —.5 (1,866

Because the norm of each row of a rotation matrix is one (sin® ¢ + cos” ¢ = 1),
and the rows are orthogonal (cos o — sin g) + sin g eos ¢ = (1), we see that rota-
tion mitrices are orthogonal matrices (i.e., orthogonal rows each of length one).

140 6. Transformation Matrices

Figure 6.7. A rotation by minus thirty degrees. Note that the rotation Is clockwise and that
€og(-30°) == 866 and sin(-30°) = -5,

6.1.4 Reflection

We can reflect a vector around either of the coordinate axes (see Figures 6.8 and 6.9):

reflect-y(s) = {_; {l‘i] . reflect-x(=) = [[; _2] .

While one might expect that the matrix with —1 in both elements of the diagonal
is also a reflection, in fact it is just a rotation by 7 radians,

Figure 6.8, A reflection about the x-axis is achieved by multiplying all p-(:mrﬂmms by -1

6.1. Basic 2D Transforms 141

I

Figure 6.9. A reflection about the y-axis is achieved by multiplying all s-coordinates by -1,

6.1.5 Composition of 2D Transforms

It is common for graphics programs to apply more than one transformation to an
object. For example, we might want to first apply a scale S, and then a rotation
R. This would be done in two steps on a 2D vector v :

first,va = Swvy, then,vg = Rva.
Another way to write this is

V3=R[SV1}.

;' 707 -707
'\

707 -.353 '--.H J |07 707
707 .353 -

Figure 6.10. Applying the two transform matrices in saquence is the same as applying the
praduct of those matrices once. This is a key concept that underlies most graphics hardware
and software.

142 6. Transformation Matrices

Figure 6.11. The order in which two transforms are applied is usually important. In this
example, we do a scale by one-halfl in y and than rotate by 45°, Reversing the order in which
these two transtorms are applied yislds a different result,

Because matrix multiplication is associative, we can also write
vy = (RS) v1.

In other words, we can represent the effects of transforms by two matrices in
a single matrix of the same size by multiplying the two matrices; M = RS
(Figure 6.10).

It is very important to remember that these transforms are applied from the
right side first. So the matrix M = RS first applies S and then R.

As an example, suppose we want to scale by one-half in the vertical
direction and then rotate by 7/4 radians (45 degrees). The resulting

6.1, Basic 2D Transforms 143

matrix is
[[}.?n? —U.T{]T] [1 u] " [u.m? —[LEEH]

0.707 0.707| [0 053] [0.707 0.353

It is important to always remember that matrix multiplication is not commutative.
S0 the order of transforms does matter. For example, scaling then rotating is
usually different than rotating then scaling (see Figure 6.11).

6.1.6 Decomposition of 2D Transforms

For any given transformation matrix M, we can decompose it into various matrix
products M = M; M,, M = MaM,M;, and 50 on.

rotate (-58.3%)

: ¥
rotate (31.7%)

b

Figure 6.12. Singular Value Decomposition (SVD) for a shear matrix. Any 20 maltsix can
be decomposed into a product of rofation, scale, rotation. Mote that the circular face of the
clock must become an allipse because it is just a rotated and scaled circle,

144 6. Transformation Matrices

An interesting result is that any 2D transform can be decomposed into the
product of a rotation, a scale, and a rotation, with the caveat that the scale may
have minus signs in it (i.e., it may include a reflection), This observation follows
from the existence of the singular value decomposition (SVD) discussed in Sec-
tion 5.2.7. As shown there, a matrix is a product M = R2SR,. where R, and R
are rotation matrices, and 5 is a scale matrix. The example used in Section 5.2.7
is in fact a shear matrix (Figure 6.12):

11 _ [o 0
b i]=m[5 of®

_|.850T7 —0.5257| [1.618 0 0.5257 0.8507
~ 105257 0.8507] 0.618| |—0.8507 0.5257

= rotate (31.7°) scale (1.618, 0.618) rotate (—58.37).

An immediate consequence of the existence of SVD is that all 2D basic transform
matrices can be made from rotation matrices and scale matrices (with negative
elements allowed). Shear matrices are a convenience, but they are not required
for expressing potential transforms.

For a symmetric matrix, we can do an eigenvalue decomposition. Recall the
example from Section 5.2.6:

2 1] A O T

[1 1] =8 [u AJR
 [0.8507 —0.5257] [2.618 O 0.8507 05257
= los2s7 0s507| | 0 0.382] |—05257 0.8507

= rotate (31.7°) scale (2.618, 0.382) rotate (—31.7°).

Note that this is exactly the product we would get if we did SVD; SVD and eigen-
value decomposition are the same for symmetric matrices. Again, the diagonal
form RSR” only exists for symmetric matrices, so SVD is certainly the more
general tool. The geometric interpretation of the transformation by a diagonal-
ized symmetric matrix is;

|. Rotate some direction to the z-axis (the transform by R");
2. Scale in x and y by (A, Ag) (the ransform by 8);

3. Rotate the y-axis back to the original direction (the transform by R.).

6.1. Basic 2D Transtorms 145

Figure 6.13. A symmetric matrix is always a scalae along some axis. In this case it is along
the &= 31.7° direction which means the real eigenvector for this matrix is in that direction.

These three transforms together have the effect of a scale in an arbitrary direc-
tion (Figure 6.13). For example, the matrix above, according to its eigenvalue
decomposition, scales in a direction 31.7" counterclockwise from three o'clock
{the z-axis). This is a touch before 2 p.m. on the clockface as is confirmed by the
figure. We can also reverse the diagonalization process; to scale by [A}, Az} with
the scaling by A, in angle ¢ we have

cosdr sing| (A 0] jeosd —sing|
—sing cosd| |0 Mg |sing cosd|

[:n. cost g+ Agsin® ¢ (Az — Ap)cos psing

(As — A{)cosdsing Agcos?d+ Aysin® ol

We should take heart that this is a symmetric matrix as we know must be true
since we constructed it assuming an eigenvalue diagonalization was possible.

In summary, every matrix can be decomposed via SVD into a rotation times
a scale times another rotation. Only symmetric matrices can be decomposed via
eigenvalue diagonalization into a rotation times a scale times the inverse-rotation,
and such matrices are a simple scale in an arbitrary direction. The SVD of a
symmetric matrix will yield the same triple product as eigenvalue decomposition
via a slightly more complex algebraic manipulation.

Another decomposition uses shears to represent non-zero rotations (Paeth,
1990). The following identity allows this:

cosgp —sing] 1 2oy o)1 emet
sing cosp| |0 1 sing 1] |0 1 '

146 6. Transformation Matrices

Figure 6.14. Any 20D rotation can be accomplished by three shears in sequence. In this
cass a rotation by 45° is decomposed as shown in Equation 8.2,

For example, a rotation by /4 (45 degrees) is (see Figure 6.14)

T R 1 0]y 1—42
e f Al OB T e

This particular transform is useful for raster rotation because shearing is a very
efficient raster operation for images: it introduces some jagginess, but will leave
no holes, The key observation is that if we take a raster position ({, j) and apply
a4 horizontal shear to i, we get

b A10=157]

If we round =j to the nearest integer. this amounts to taking each row in the
image and moving it sideways by some amount—a different amount for each
row. Because it is the same displacement within a row, this allows us to rotate
with no gaps in the resulting image. A similar action works for a vertical shear.
Thus, we can implement a simple raster rotation easily.

6.2. Basic 3D Transforms 147

6.2 Basic 3D Transforms

The basic 3D transforms are an extension of the 2D transforms, For example, a
scale along Cartesian axes is

8 0 0
scale{sz. sy, 8:)= |0 & 0. (6.3)
g 0 s

Rotation is somewhat more complicated because there are now more possible
axes of rotation. However, if we simply want to rotate about the z-axis, which
will only change - and y-coordinates, we can use the 2D rotation matrix with no
operation on z;] }
cosgd —sing ()
rotate-z(«) = | sin ¢ cosd ()
0 01

Similarly we can construct matrices 1o rotate about the r-axis and the y-axis:

1] {
rotate-x(b) = [0 cosg —sing| .,
0 singh C08 ¢ |

cosg 0 sin]
rotate-v(d) = 1] 1 0
| —sing 0 coso|

We will discuss rotations about arbitrary axes in the next section.
As in two dimensions, we can shear along a particular axis, for example,

1 &, oy
shear-x{dy.d;) =10 1 0
0 1

As with 2D transforms, any 3D transformation matrix can be decomposed using
SVD into a rotation, scale. and another rotation. Any symmetric 3D mairix has
an eigenvalue decomposition into rotation, scale, and inverse-rotation. Finally, a
3D rotation can be decomposed into a product of 3D shear matrices.

68.2.1 Arbitrary 3D Rotations
As in 2D, 3D rotations are erthonormal matrices, Geometrically, this means that

the three rows of the matrix are the Cartesian coordinates of three mutually-
orthogonal unit vectors as discussed in Section 2.4.5. The columns are three,

£

148 6. Transtormation Matrices

potentially different, mutually-orthogonal unit vectors. There are an infinite num-
ber of such rotation matrices. Let's write down such a matrix:

Ty Yo Zy
Ruvw= |#v MW 2o
T e Z
Here, u = =,x + 3, ¥ + z,% and s0 on for v and w. Since the three vectors are
orthonormal we know that
uu=v.v=w.-w=1,
uv=v.w=w -u=I(,
We can infer some of the behavior of the rotation matrix by applying it to the
vectors w, v and w, For example,

Ty MNu 2w Ay Lyliy + Mullu + Zuu
Rivul = |y v 20 Pu| = | Tolu T Yollu + Zu3u
Ty Hw S Zu Loy T Yl i

MNote that those three rows of R, 0 are all dot products:

m-u 1
Riob= |v-u| = |0] =x.
W n 1]

Similarly, R, v = y. and R, w = 2. 50 R, takes the basis uvw 1o the
corresponding Cartesian axes via rotation.

If Rpq i5 @ rotation matrix with orthonormal rows, then R is also a ro-
tation matrix with orthonormal columns, and in fact is the inverse of R, (the
inverse of an orthogonal matrix is always its transpose). An important point is that
for ransformation matrices, the algebraic inverse 18 also the geometric inverse, So
if R takes u tox, then RY | takes x to u. The same should be true of v and
¥ as we can confirm:

T By B |0 Ty
RlTI.' wyY — u W Huw 1| = o | = V.
Tu Zr Zap 1 Zp

So we can always create rotation matrices from orthonormal bases.

If we wish to rotate about an arbitrary vector a, we can form an arthonormal
basis with w = a, rotate that basis to the canonical basis xyz, rotate about the
z-axis, and then rotate the canonical basis back to the uvw basis. In matrix form,
to rotate about the w-axis by an angle ¢

Ty Ty Tyl |cosp —sing O] [z w2
Yo U Wwl| [siog cosp O |2y ¥ =
| 0 0 I = e =i

6.2, Basic 3D Transforms 1449

Here we have w a unit vector in the direction of a (i.e. a divided by its own
length). But what are u and v7 A method to find reasonable u and v is given in
Section 2.4.6.

Mote that if we have a rotation matrix and we wish to know in which direction
it is rotating, we can compute the one real eigenvalue (which will bé A = 1), and
the corresponding eigenvector i4 the “pole’” of the rotation, This is the one axis
that is not changed by the rotation.

6.2.2 Transforming Normal Vectors

While most 3D vectors we use represent positions {offset vectors from the origin)
or directions, such as where light comes from, some vectors represent surface
normals, Surface normal vectors are perpendicular to the tangent plane of a sur-
face. These normals do not transform the way we would like when the underlying
surface 15 transformed. For example, if the points of a surface are ranstormed by
a matrix M, a vector t that is tangent 1o the surface and is multiplied by M will
be tangent o the transformed surface. However, a surface normal vector n that is
transformed by M may not be normal to the transformed surface (Figure 6.15).

We can derive a transform matrix N which does take n to a vector perpen-
dicular to the transformed surface. One way to attack this issue is to note that a
surface normal vector and a tangent vector are perpendicular, so their dot product
is zero, which is expressed in matrix form as

n't =0 (6.4)

If we denote the desired transformed vectors as tyy = Mt and ny = Nn,
our goal is to find N such that nkty, = 0. We can find N by some algebraic

A

Figure 6.15. When a normal vector is translated using the same malrix that transforms
the points on an object, the resulting vector may not be perpendicular to the surface as is
shown hera for the sheared rectangla. The tangent vector, however, does transform o a
vactor tangent to the transformed surface,

150 6. Transformation Matrices

tricks, First, we can sneak an identity matrix into the dot product, and then take
advantage of M—'M = I:

nt=n"It=n"M"'Mt=0.

Although the manipulations above don't obviously get us anywhere, note that we
can add parentheses that make the above expression more obviously a dot produet:

(n"M™) (Mt) = (n"M ")ty = 0.

This means that the row vector that is perpendicular to ty is the left part of the
expression above. This expression holds for any of the tangent vectors in the
tangent plane. Since there is only one direction in 3D (and its opposite) that
is perpendicular to all such tangent vectors, we know that the left part of the
expression above must be the row vector expression for ny, i.e., it is n, so this
allows us to infer MN:

ol = nTM~,
s0 we can take the transpose of that to get
ny = {nTM_‘]T = {M_I]T n. (6.5)

Therefore, we can see that the matrix which correctly transforms normal vectors
so they remain normal is N = (M™')7, i.e., the transpose of the inverse ma-
trix. Since this matrix may change the length of n. we can multiply it by an
arbitrary scalar and it will still produce ny with the right direction. Recall from
Section 5.2.3 that the inverse of a matrix is the transpose of the cofactor matrix
divided by the determinant. Because we don’t care about the length of & normal
vector, we can skip the division and find that for a 3 by 3 matrix,

(s L i
My My My

—— iC i [
N=|m3 myjp my
My Mg TGy

This assumes the element of M in row ¢ and column j is w5, So the full expres-
sion for N is

MigaMagy — Mggingy Mgy — Mgy Mg — Maalnig)
N = \mamaz — myzgmasy My imgy — Mgy Myamg, — Mayinag
TMipathay — MggMMiga T3 Tay — T Mgs M fag = Myaimigg

6.3. Translation 151

6.3 Translation

We have been looking al methods to change vectors using a matrix M. In two
dimensions, these transforms have the form,

!

T mye + Mgl
#

¥ = mpr -+ Mozl

We cannot use such transforms to move locations we have represented as offset
vectors from the origin, Recall that for directions and offset vectors without an
origin, it does not make sense to talk about moving them; we are only talking
about locations here. To move a location, we need a transform of the form,

¥ = x® 4+ @y,
¥ o= ¥ + B

There is just no way to do that by multiplying (z,y) by a two by two matrix,
It would be feasible o just keep track of scales and rotations as a matrix and
keep track of translations (moves) separately, but doing that would involve fairly
painful bookkeeping, Instead, we can use a technique to move the computation
into a higher dimension. This technigue has become standard in almost every
graphics program and especially in every graphics hardware chip,

The key observation is that when we do a 3D shear based on the z-coordinate
we gel this transform:

1 0 = T T+ @z
01 wm| |v|=|ytus
o0 1 z s

Mote that this almost has the form we want in & and y for a 2D translation, but
has a = hanging around that doesn’t have a meaning in 2D. Now comes the key

decision: we will add a coordinate = = 1 to all 2D locations. This gives us:
1 0] |= T+ T
01 wf|y|=|v+
0 0 1 1 1

By associating a = = l-coordinate with all 2D points, we now can encode trans-
lations into matrix form. For example, to first translate in 2D by (t,, ¢,] and then
rotate by angle ¢ we would use the matrix

cosdr —sing 0] [1 0 &
M = |sing cosg O] |0 1
] { 1 0 0 1

152 6. Transformation Matrices

Mote that the 2D rotation matrix is now three by three with zeros in the “translation
slots”” With this type of formalism, which uses shears along = = 1 1o encode
translations, we can represent any number of 2D shears, 2D rotations, and 2D
translations as one composite 3D matrix. Interestingly, the bottom row of that
matrix will always be (0,0, 1), so we even don’t really have to store it. We just
need to remember it is there when we multiply two matrices together.

A problem with this new formalism is that we do not want direction or arbi-
trary offset vectors to move when we apply a translation. Fortunately, we can do
this by making their third coordinate zero. This gives

1 0 x| |z T
01wl |yl =y
0 0 1 il {l

This is exactly the behavior we want for vectors. So the third coordinate in 2D
will be either | or 0 depending on whether we are encoding & position or a di-
rection. This coordinate is usually called the homogeneous coordinate (Roberts,
1965; Riesenfeld, 1981; Penna & Patterson, 1986). We actually do need to store
the homogeneous coordinate so we can distinguish between locations and other
vectors. For example,

3 3
21 is alocation and 21 is a displacement or direction,
1]

Later, when we do perspective viewing, we will see that it is useful to allow the
homogeneous coordinate to be some value other than one or zero,

In 3D, the same technigue works: we can add a fourth coordinate, a homoge-
neous coordinate, and then we have translations:

1 0 0 =z = &+
010 wm| ¥ ¥+
DO 1 oz lz]l T lz+z
00 0 1 1 1

Again, for a vector, the fourth coordinate is zero and the vector is thus unaffected
by translations.

It is interesting to note that if we multiply an arbitrary matrix composed of
shears and rotations with a simple translation, (translation comes second) we get

1 0 0 Ty L5 S g2 @13] a1y 2 M3 Ty
0 1 0 w| |an e ey Of _ |az a2 asz B
0 0 1 2| |em am azp 0 a1 Q32 B33 It
-0 0 1 0] 1] 1 0] {l 1

6.3, Translation 153

Thus we can look at any matrix and think of it as a scaling/rotation part and a
ranslation part because the components are nicely separated from each other.

An important class of transforms are rigid-body transforms. These are com-
posed only of ranslations and rotations, so they have no stretching or shrinking
of the objects, Such transforms will have a pure rotation for the a,; above.

6.3.1 Windowing Transforms

Often in graphics we need to create a transform matrix that takes poinis in the
rectangle [a, A] x [b. B] to the rectangle [¢, €] x [d, D]. This can be accomplished
with a single scale and translate in sequence. However, it is more intuitive to

create the transform from a sequence of three operations (Figure 6.16):

1. Move the point (e, b) 1o the origin.
2. Scale the rectangle to be the same size as the target rectangle.

3. Move the origin to point (e, d).

4 I
¥ (A.B) 4
{a:b)
. (A-a, 8-
transiate —fA-a &)
X [
' 4
/ v}
S J scale
= (c.o)
{C-c,0-d)
WAl e
fransiate” (c.d)
X X

Figure 6.16. To take one rectangle (window) fo the other, we first shift the lower-left corner
I the origin, then scale it fo the new size, and than move the origin to the lower-left cormer
of the target rectangle.

154 6. Transformation Matrices

Remembering that the right-hand matrix is applied first, we can write

. C—c D—d
window = translate (e,) scale (E,m) translate (—a, —b)

10 1[5 0 o ~d
=01 dl|0 & 0 ~b o
0 0 1 01 1 &

o
—| ¢ D¢ aB-Db
—b B-h

Lo o 1

It is perhaps not surprising to some readers that the resulting matrix has the form
il does, but the constructive process with the three matrices leaves no doubt as o
the correctness of the result.

6.4 Inverses of Transformation Matrices

While we can always inveri a matrix algebraically, we can use geometry if we
know what the transform does. For example, the inverse of scale(s,, s, 5.) is
scale(1/s.,1/5,,1/5.). The inverse of a rotation is its transpose. The inverse
of a translation is a translation in the opposite direction. If we have a series of
matrices M = M;Mz--- M, then M~ = M 1... My ML,

Interestingly. we can use SV to invert a matrix as well. Since we know
that any matrix can be decomposed into a rotation times a scale times a rotation,
inversion is straightforward. For example in 3D we have

M = R;scale(o1, 72, 73) Ra,
and from the rules above it follows easily that
M~ = R scale(1/o1,1/02,1/03)R] .

6.5 Coordinate Transformations

All of the previous discussion has been in terms of using transformation matrices
1o move points around. We can also think of them as simply changing the coor-
dinate system in which the point is represented. For example, in Figure 6.17, we

8.5. Coordinate Transformafions 155

| 11e
(21)a
| : Iﬁ-'\'}-

Figure 6.17. The point (2,1} has a transform “transiate by (-1,0)" applied to it On the top
right ks our mantal image if we view this transformation as a physical movement, and on the
bottomn right is our mental image if we view it as a change of coordinates (a movement of the
arlgin in this case), The artificial boundary is just an artifice, and the relative position of the
axes and the point are the same in either casa.

see two ways 1o visualize a movement. In different contexts, either interpretation
may be more suitable. For example, suppose we have the model of a city and a
car. We can provide an illusion of motion as long as the relative coordinates of
the car and city change in an appropriate manner. This can be accomplished by
changing either car or city coordinates. Intuitively, we should probably think in
terms of moving the car; however, we could think in terms of changing the city
coordinates as well. It is not really important how one chooses to think about
these things, provided the thinking is consistent and documented.

Often we need 1o manage multiple Cartesian-style coordinate systems, each
having its own basis vectors and origins. Typically there is a “global™ or “canoni-
cal” coordinate system. In 2D the usual convention is is to use the point o for the
origin, and x and ¥ for the right-handed orthonormal basis vectors x and y (Fig-
ure 6.18). Another coordinate system might have an origin e and right-handed
orthonormal basis vectors u and v. Note that typically the canonical data o, x,
and y are never stored explicitly. They are the frame-of-reference for all other

v\/u “'E'#\iu.w

-] a

¥ *p]
ﬂ_rjj i
o F e 2.

Figure 6.18. The point p can be reprasented in terms of either coordinate systam.

156 6. Transformation Matrices

coordinate systems, In that coordinate system, we often write down the]l;CaﬁDII
of p as an ordered pair, which is shorthand for a full vector expression:

P=(Zp.Up) = 0+ 2pX + Ypy-

For example, in Figure 6.18, (r,.4,) = (2.5,0.9). Note that the pair (&, y;)
implicitly assumes the origin o. Similarly, we can express p in terms of another
equation:

P = (Uptp) S @4 uu+ vy, (6.7)

In Figure 6.18, this has (u,, v,) = (0.5, —0.7). Again, the origin e is left as an
implicit part of the coordinate system associated with u and v. We can use the
simple matrix machinery of this chapter to move back and forth between coordi-

nale systems:
T, 1 0 =z Ty Eu O Juy
| =0 1 el |8 ¥ 0O |vp].
1 00 1 0o 0 1 1

Mote that this assumes we have the point e and vectors u and v stored in canonical
coordinates; the xy coordinate system is the first among equals. To go in the other
direction we have

uj-l Ty yu ﬂ' 1 u —XLu I?‘
tp| =& e O |0 1 —We| |Wp]-
I D o 1o o 1 1

Anzlogously, in 3D we have

-

Ty 1 0 0 Zuf| [&v ZTw D] [up
¥o | 01 0 # U Yv Yo D Up
] 100 1 5] |5 m 2w B |l (6:3)
1 n oo 1 0o o 0 1 1
and

Uy Th Yo Zm 0 10 =m] |Em

tpl l2w o oz 010 1 0 =] [th

we| |26 Yw 2 O] |0 O 1 Ze| | % (6.9
1 { 0 0 1|0 0 0 1 1

6.5. Coordinate Transformations 157

Frequently Asked Questions

« Can't | just hardcode transforms rather than use the matrix formalisms?

Yes, but in practice it is harder to derive, harder to debug, and not any more ef-
ficient. Also, all current graphics APIs use this matrix formalism so it must be
understood even to use graphics libraries,

» The bottom row of the matrix is always (0,0,0,1). Do | have to store it?

You do not have to store it unless you include perspective transforms (Chapter 7).

Notes

The derivation of the ransformation properties of normals is based on Proper-
tiex of Surface Normal Transformations (Turkowski, 1990). In many treatments
through the mid-1990s, vectors were represented as row vectors and premulti-
plied, e.g., b = aM. In our notation this would be b” = a”M™. If you want to
find a rotation matrix R that takes one vector a to a vector b of the same length:
b = Ra you could use two rotations constructed from orthonormal bases. A more
efficient method is given in Efficiently Building a Matrix ta Rotate One Vector to
Another (Miller & Hughes, 1999),

Exercises

1. Show that the inverse of a rotation matrix is its ranspose.

2. Write down the 4 by 4 3D matrix to move by (£, ¥m, Zm -

3. Write down the 4 by 4 3D matrix to rotate by an angle & about the y-axis.
4. Write down the 4 by 4 3D matrix to scale an object by 50% in all directions.
5. Write the 2D rotation matrix that rotates by 90 degrees clockwise,

6. Write the matrix from Problem 5 as a product of three shear matrices,

7. Describe in words what this 2D transform matrix does:
0 -1 1

158 6. Transformation Matrices

8. Write down the 3 by 3 matrix that rotates a 2D point by angle # about a
point p = {'xjﬁf Hp}

9. Write down the 4 by 4 rotation matrix that takes the orthonormal 3D vectors
u= Eztn Blas -z'u:}t ¥ = {I'l.l't o,y zﬂ} and w = {Iw, yw,zw}. to orthonormal

3D vectors & = (T ¥arZa) b = (@p, 30, 2) and € = (Tg, Yoo 20), SO
Mu=a Mv="5b,and Mw=c.

10, What is the inverse matrix for the answer to the previous problem?

/

Viewing

The transform tools developed in the last chapter will make it straightforward for
us to create images of 3D line segments. In this chapier, we develop the methods
to produce 3D orthographic and perspective views of line segments in space with
no “hidden-line” removal (Figure 7.1). Note that in the orthographic projection,
the parallel lines in 3D are parallel in the image, while in the perspective pro-
jection they may not be parallel in the image. For the entire chapter, we assume
that 3D line segments are specified by two end points, each of the form [z, y, z).
In the next chapter we use BSP trees and z-buffers to allow opague objects with
hidden-line and hidden-surface removal, and we will use riangle faces rather than
triangle edges.

Figure 7.1. Left: orthographic projection. Middle: perspective projection, Right: perspective
projection with hidden lines removad.

159

Figure 7.2. The canonical
view volume is a cube with
side of langth two centerad
at the arigin.

160 7. Viewing
7.1 Drawing the Canonical View Volume

We begin with a problem whose solution will be reused for any viewing condition.
We want to map lines 10 the screen along the z-axis in the positive direction. We
will limit this projection to objects within the canonical' view volume. This is the
volume defined by all 3D points whose Cartesian coordinates are between — | and
+1. This cube can be specified as (x, y. z) € [-1.1]* (Figure 7.2).

If we have a screen made up of e by n,, pixels, we project # = —1 to the left
side of the screen, r = +1 to the right half of the screen, y = —1 to the bottom
of the screen, and y = +1 to the top of the screen. Note that this is mapping
the square |—1, +1]? to a potentially non-square rectangle. That is not a problem;
o and y will just have different scaling parameters when they are converted to
pixel coordinates. For now we will assume that all line segments to be drawn are
completely inside the canonical view volume. Later we will relax that assumption
when we discuss clipping.

Recall from Chapter 3 that pixels have a finite square extent, the coordinates
have a 0.5 unit overshoot from the pixel centers, and the smallest pixel center
coordinates are (().0); an ., by n, screen has integer centers and boundaries de-
fined by [—0.5, n, —0.3] % [-0.5, ny, —0.5]. This is called a windowing transform
and is given by Equation 6.6:

Lpivet ’_12:' 0 E"‘;__i Eeunonical
Ypixet | = | 0 i? n_%—!_ Heanonical | - (7.1
1 0 0 i 1

Note that there is no allowance for = values here. In practice = values will be kept
or the correct ordering of surfaces will not be kept. However, we will ignore = for
now 10 make the matrices a little smaller.

Also, recall that in some APIs the y-axis points downward. We'll examine
this case because it makes a nice exercise. [t creates the somewhatl odd trans-
form where the y values need to be flipped. The transform to convert points
in the canonical view volume to such pixel coordinates is a variant of the win-
dowing transform (Equation 6.6), but because of the flip, we will derive it from
scratch,

"The word “canonical” crops up in many contexts and usually refers to some customary variable
or shape that is in some way “nice.” For example, if we were to define a “canonical circle.” it would
likely be of unit radis and centered af the origin,

7.1. Drawing the Canonical View Volume 161

LS LR) ¢-1.4) y
- el
"k reflect-y x
{-1,-1) p (1,-1)
scale
o
(-n/2,n/2) (-0.5, 1,-0.5)
I
B IR .
translate
i x
(nd2,-ny/2) (n,-0.5, -0.5)

Figure 7.3. When the v screen coordingtas increase from the top of the screen to the
bottom, the transform from the x-componants of the canonical view volumea to the scraen
coordinates invalve a flip.

It can be accomplished as shown in Figure 7.3, which yields

Epinel 10 =171 0 0] 0 0] [Zeawonical
ypilclﬂ = [1 2‘2;1] T_!Ek () g =1 10 Hennomical
1 0 0 1 0 0 1} |0 a1 1
%"] ﬂ=2__i Leanoncal (?.2}
=0 - %"— m"g;l Weanonical
4]] 1 1

Wi save a lot of pain by doing transforms using more than one matrix as we derive
things. For example. there is no reason not to implement Equation 7.1 as a product
of three simple matrices. If you implement a matrix library with reflection, scale,
and translate initialization routines for matrices, these can be re-used in many
situations. Also, the resulting code is easier to debug; note how much easier it
is to relate the expanded form of Equation 7.2 to Figure 7.3. If we expand the
full-blown algebra by hand, we might make mistakes, and the equations would be
less informative; we can see by looking at the matrix product that we scale/flip
and then move. That would be much harder to see with the expanded product.
So let the matrix multiplication handle the algebra in your implementation. No
efficiency is lost except for a small preprocessing time, and your code is more
modifiable and more likely to be correct.

A

Flgure 7.4. The ortho-
agraphic view volume.

162 7. Viewing

7.2 Orthographic Projection

We wsually want to render lines in some region of space other than the canonical
view valume. The basic step is to take each line with 3D endpoints a and b and
to use a matrix M to take these points to Ma and Mb which can be drawn in the
canonical view volume, The matrix M encodes all the masty geometry of viewing
and projection.

The simplest case occurs when this volume is the axis-aligned box [l.7] =
b, t] = [n, f] shown in Figure 7.4. We call this box the orthographic view volume
and refer to the bounding planes as follows:

o = | = left plane,

r = r = right plane,
y = b = bottom plane,
y =t = top plane,

z = 1 = near plane,

z = f = far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with
his head pointing in the y-direction.® This implies that n > f which may be
unintuitive, but if you assume the entire orthographic view volume has negative =
values then the z = n “near” plane is closer to the viewer if and only if n > f;
here [is a smaller number than n, i.e., & negative number of larger absolute value
than n.

This congept is shown in Figure 7.5. The transform from orthographic view
volume to the canonical view volume is really just a 3D version of the 2D win-
dowing transform presented in Section 6.3,1.

This transformation that takes y = htoy = -l y=ttoy = +1, 2 =1{
toxr = -1, z=ntoz=1,and z = ftoz = —1 can be encoded as a
scale and then a move, or a move and then a scale. Note that with this choice for
[re, f], f isa more negative number than n in . Here n stands for “near plane” and
[stands for “far plane”, Many programs flip them at this point as we will discuss

*Most programmers find it intuitive 1o have the -axis pointing right and the y-uxis pointing up. In
a right-handed conrdinate system, this implies that we are looking in the —z-direction. Some systems
use i left-hunded coordinate system for viewing so that the goze direction is slong the + z-direction.
Which is the best compromise is a matter of taste, amnd this text sssumes a right-handed coordinate
wystem, A reference thiat argpues for the lefi-handed system instead iz given in the notes at the end of
the chapler,

7.2. Orthographic Projection 163

Figure 7.5. The orthographic view volume s along the negative z-axis, so [s a more
nagative number than n, thus n = f

later. Moving to the origin first is somewhat more intuitive for most people:

Feanimical ﬁ 0]] 1 AF f: = "'_‘EI T

Beanomict | _ | 0 72 0 0[]0 1 0 Bt |y iy

Sounonical 0] ﬁ al o o 2 = '1“: = -
1 0 0 0 1o oo 1 1

Note that we have gone 1o 4 by 4 transformation matrices because = is also being
manipulated here, and because n — f 15 a positive number,

To draw 3D line segments in the orthographic view volume, we project them
into screen ry-coordinates and ignore z-coordinates, We do this by combining
Equations 7.1 and 7.3. Because Equation 7.1 is 2D, we add a “do nothing”
operation on 2 o get

o0 0 " rL 0 0 0oL 00 -4
n T | 2 b
M= |0 F O B[]0 & 0 o010 o
00 1 0 0 0 % o]jo o1 -2
00 0 1 00 0 looo 1

(7.4)

Mote that in a program we multiply the three square matrices together to form one
matrix M, and then manipulate points as follows:

I pinel i
) Hpixel =M, .‘ir
“ennonical =

1 1

The z-coordinate will now be in [—1, 1], We don't take advantage of this now, but
it will be useful when we examine z-buffer algorithms.

Mote that we could also derive Equation 7.4 as just a 3D windowing transform,
It is straightforward to generalize Equation 6.6 to 3D; to take the 3D box [a, A] =

v
t
e
u a
Figure 7.6. The user
specilies viewing as an aye

position @, a gaze direc-
tion g, and an up vector
t We construct a right-
handed basis with w point-
ing opposite to the gaze
and v being in the same
plane as g and t.

164 7. Viewing

[b, B] % [e. C] to the 3D box [d, D] = [e, E] = [f, F| we have

g2 0 o el
) 1] —r il eB—Eb
window3D = | [;f’ Fey [33:;: (7.5)
g [
]] i 1

Equation 7.4 takes [I, v] x [t,b] x [n. f] to [<0.5,n, — 0.5] % [-0.5, n, — 0.5] x
[—1, 1], which can be plugged into Equation 7.5 to get the matrix we want.
The code to draw many 3D lines with endpoints a; and b, thus becomes both
simple and efficient:
compute M,
for each line segment (a;. b,) do
p = M,a;
q = M,b;
drawline(. yp. Ty, Uy

This is a first example of how matrix transformation machinery makes graphics
programs clean and efficient.

7.2.1 Arbitrary View Positions

We'd like to able to change the viewpoint in 3D and look in any direction. There
are a multitude of conventions for specifying viewer position and orientation. We
will use the following one (see Figure 7.6}

» the eye position e,
» the gaze direction g,
o the view-up vector t.

The eye position is a location that the eye “sees from.” If you think of graphics
as a photographic process, it is the center of the lens. The gaze direction is any
vector in the direction that the viewer is looking, The view-up vector is any vector
in the plane that both bisects the viewer’s head into right and left halves and points
“to the sky™ for 4 person standing on the ground. These vectors provide us with
enough information 1o set up a coordinate system with origin e and a wvw basis:

—— i
llell
toxw

U= —:
[wll

V=W X 1.

7.2, Orthographic Projection 165

(e, el e l)

Figure 7.7. For arbitrary viewing, we nead to change the points to be stored in the “appro-
priate” coordinate systam. In this case it has orlgin e and offset coordinates In terms of uvw,

Note that our job would be done if all points we wished to transform were stored in
coordinates with origin e and nvw-axes, but as shown in Figure 7.7, they are siored
with the canonical origin o and xvz-axes. To use the machinery we have already
developed, we just need to convert the coordinates of the line segment endpoints
we wish to draw into (u, v, u)-coordinates offset from origin e. Alternatively (the
math 15 the same), we can think of the transform as moving e 1o the origin and
aligning uvw to xyz. This view transformation is

Ty Yo zw 0] |1 O O =z

lme e oz O (01 O —pe
M, = T Yo Zwe O] (0 0 1 —z
g 0 0 1|0 06 0 1

If we multiply a point p by M., we will have “aligned” it to the coordinate axes.
This allows us to make a very minor change (o the z-axis viewing algorithm we
saw earlier:
compute M,
compute M,
M = MM,
for each line segment (a;, b;) do
p = Ma;
q = Mb;,
drawline(zp, Yp. £q. 4q)
This illustrates the remarkable power we gain when using transformation matrices
to implement algorithms. Almost no code is needed once the matrix infrastructure
is in place.

7.2, Orthographic Projection 163

Figure 7.5. The orthographic view volume Is along the negative z-axis, so fis a more
negative number than n, thus m = f

later. Moving to the origin first is somewhat more intuitive for most people:

Lianonical Ti_'f 0] 0 1 0 Q = Lir T
Yeanonical [_ | 0 tht.l 0 Mo 10 — b_h y &%
Zcanioaicul 1] 0 2 - 0l fooo 1 - ﬂ%..[x ;

1 1] 1] 0 1 (0o 0 0 1 1

Note that we have pone 1o 4 by 4 transformation matrices because = is also being
manipulated here, and because n — f is a positive number.

To draw 3D line segments in the orthographic view volume, we project them
into screen wy-coordinates and ignore z-coordinates. We do this by combining
Equations 7.1 and 7.3, Because Equation 7.1 is 2D, we add a “do nothing”
operation on z to get

0 0 =L 0 0 o0 00 -5
i . — L a Bt
M.=|0 0 s 0 A 0 ofjo 10 -
: 0 0 1 0 0) %f o) o o 1 -2
0 0 0 1 0 0 0o 1looo 1

(7.4)

Note that in a program we multiply the three square matrices together to form one
matrix M,,, and then manipulate points as follows:

Ipixa:l Hi
Hpanel e
- o

Zeannnical

1

=

_—

The z-coordinate will now be in [—1, 1|. We don’t take advantage of this now, but
it will be useful when we examine z-buffer algorithms.

MNote that we could also derive Equation 7.4 as just a 3D windowing transform.
It is straightforward to generalize Equation 6.6 to 3D to take the 3D box [a, A] x

u g

Figure 7.6. The user
specifies viewing as an eya
position &, a gare direc-
fion g, and an up vector
t. We construct a right-
handed basis with w point-
ing oppasite to the gaze
and v being in the same
plane as g and t.

164 7. Viewing

[b. B] x [, C] to the 3D box [d, D] x [e, E| x |f. F| we have

= A
0 55 0 =
window3D = A ke |+ (7.3)
07 o=
00 0 1

Equation 7.4 takes [,] x [t, 8] x [n, f] to [-0.5, rip — 0.5] % [-0.5, n, ~ 0.5] x
[—1, 1}, which can be plugged into Equation 7.5 to get the matrix we want.
The code to draw many 3D lines with endpoinis a; and b; thus becomes both
simple and efficient:
compute M,
for each line segment (a;. b, do
p=M,a,
q=M,b,
drawline(r, ¥p. T, 1y

This is a first example of how matrix transformation machinery makes graphics
programs clean and efficient,

7.21 Arbitrary View Positions

We'd like to able to change the viewpoint in 3D and look in any direction. There
are a multitude of conventions for specifying viewer position and orientation. We
will use the following one (see Figure 7.6):

» the eye position e,
® the gaze direction g,
s the view-up veclor t,

The eye position is a location that the eye “sees from.” If you think of graphics
as a photographic process, it is the center of the lens. The gaze direction is any
vector in the direction that the viewer is looking. The view-up vector is any vecior
in the plane that both bisects the viewer's head into right and left halves and points
“to the sky™ for a person standing on the ground. These vectors provide us with
enough information to set up a coordinate system with origin e and a uvw basis:

_—
el
i txw
e wi’

V=W X 1L

7.2. Orthographic Projection 165

Pt e

¥

Figure 7.7. For arbitrary viewing, we need to change the paints to be stored in the “appro-
priate" coordinate system. In this case it has origin @ and offset coordinates in terms of uvw.

Note that our job would be done if all points we wished to transform were stored in
coordinates with origin e and nvw-axes, but as shown in Figore 7.7, they are stored
with the canonical origin o and xyz-axes. To use the machinery we have already
developed, we just need to convert the coordinates of the line segment endpoints
we wish to draw into (u, v, w)-coordinates offset from origin e. Alternatively (the
math is the same), we can think of the transform as moving e to the origin and
aligning uvw 1o xyz. This view transformation is

Ly Hlu i 1] 1 0n 0 —ifg

Ty Y 2o 0110 1 O -
M, = 5

Tow Y 2w 0 |0 0 1 =gz

6 o 0 1|(0 0 0 1

I we multiply a point p by M, we will have “aligned” it 1o the coordinate axes.
This allows us to make a very minor change to the z-axis viewing algorithm we
saw earlier:
compute M,
compute M,
M=M,M,
for each line segment (a;. b;) do
p = Ma,
q = Mb,
drawline (T, . Ty, Uy
This illustrates the remarkable power we gain when using transformation matrices
to implement algorithms. Almost no code is needed once the matrix infrastructure
is in place.

166 7. Viewing

Figure 7.8. In three-point perspective, an artist picks “vanishing points” where parallel
linas meet. Parallel horizontal lines will meet at a point an the horizon, Evary set of parallel
lines has its own vanishing polnts. These rules are followed automatically if we implement
perspective based on the correct geometric principies.

7.3 Perspective Projection

To capture the effects of perspecrive, we need to draw line segments that are
farther from the viewer smaller than similar line segments that are closer to the
viewer. While one might expect to automate the artistic conventions of three-poini
perspective {Figure 7.8), in fact all such rules will be followed automatically if we
follow the simple mathematical rule underlying perspective: objects are projected
directly toward the eye, and they are drawn where they meet a view plane in front
of the eve.

Figure 7.9. The geometry for Equation 7.6. The viewer's eye is at e and the gaze direction
g (the minus z-axis). The view plane is a distance d from the eye. A point is projected toward
e and wheare It intersects the view plane is whare it is drawn,

7.3. Perspective Projection 167

In fact, the size of an object on the screen is proportional to 1/z for an eye al
the origin looking up the negative z-axis. This can be expressed more precisely in
an equation for the geometry in Figure 7.9:

e = Ey- (?.51

-]

where i is the distance of the point along the y-axis, and y, 15 where the point
should be drawn on the screen.

We would really like to use the matrix machinery we developed for ortho-
graphic projection to draw perspective images; we could then just multiply an-
other matrix into our composite matrix and use the algorithm we already have.
The geometric operation that allows us to do that is the ransformation of the
points along a line through the eye to a line parallel to the z-axis. This is shown
in Figure 7.10. Note that it does not matter where the points are transformed in
z, because the orthographic projection will ignore = anyway. 1f we want 1o have
the transform work seamlessly with the orthographic projection, then we want
to set the view plane to be at = = 7, and then the portion of the view plane
with (u, v} € [I,7] x b t] will be displayed. Such a transform is shown in Fig-
ure 7.11. One property of that transform is that lines through the eye are made
parallel in such a way that their intersections with the = = n plane are unchanged
{Figure 7.12},

We would like it if we could write down a matrix that would accomplish the
above transformation, but it cannot be done; the divide by =z in Equation 7.6 is
not an operation that the matrix machinery we have seen so far can accomplish.
However, there is a beautiful and simple extension to this technology that makes
such a “perspective z divide™ possible. The key is to use the fourth coordinates
of the points, which have been one so far, and allow them to ke values other
than one.

@
5]
-1
. P
g l]
e ‘—r_____--""-/ '/
>l _F___..--"’--
f'-'-/ _,.L"L_ - T —

[
& .

Figure 7.10. The perspective projection can be obtained by an orthographic projection
provided lines through the eye are all parallel to the gaze direction. The spacing of the
resulting fines should intersect the view plane wheraver the lines through the eye do.

168 7. Viewing

Figure 7.11. The perspective projection leaves points on the z = n plane unchanged and
maps the large z = { rectangle at the back of the perspective volums to the small z = f
rectangle at the back of the orthographic volume.

Figure 7.12. The perspective projection maps any line through the originfeye to a line
paraligl to the z-axis and withou! moving the paint on the line at z = n.

7.3. Perspective Projection 169

| O
X=T.5 W=3

Figure 7.13. The homogeneous value x = 1.5 is represented by any point on the line x =
1.5h, such as points at the hollow circles. However, before we interpret x a8 a conventional
Cartesian coordinate, we first divide by # to get (x./) = (1.5,1) as shown by the black paint.

We refer to this fourth coordinate (for 3D locations) as the homogeneous coordi-
nate fi. This coordinate really encodes how much the other three coordinates have
been scaled. Sinee in the end we only care about (x, y, 2], we define the following
somewhat strange equivalence:

ha T
hy| _ v
hz| ™ |z

h |

Thus, we can compute with points whose fourth (homogeneous) coordinate
h is not one, but we must divide the other three coordinates by £ before inter-
preting them as traditional Cartesian coordinates. For example, the r-coordinate
is the same for all points on the homogeneous 4D “line” » = 1.5/ as shown in
Figure 7.13. For example,

6 3
8 homogenize 4
2 1

With this homogenization procedure, where we get the “real” location by dividing
by the fourth coordinate i, we can construct the perspective matrix

1 0 0 0

1 0 {
Vo= lg o akt _pf-

T

o0 L

n

170 7. Viewing

There are many matrices which can function as perspective matrices, and all of
them non-linearly distort the z-coordinate, This specific matrix has the nice prop-
erties shown in Figures 7.11 and 7.12; it leaves points on the = = n plane en-
tirely alone, and it leaves points on the z = f plane at z = f while "squishing”
them in & and y by the appropriate amount. The effect of the matrix on a point

(z,y,2) is:

=
B

w2 o2

=

u
M = homogenize
. 23{-":—_{ e n+_|"—-%

&

—

— 1

As you can see, v and y are scaled and, more importantly, divided by z. Because
both n and = (inside the view volume) are negative, there are no “flips” in x
and y. Although it is not obvious (see the exercise at the end of the chapter),
the transform also preserves the relative order of = values between z = n and
z = f, allowing us to do depth ordering after this matrix is applied. This will be
important later when we do hidden surface elimination,

For homogeneous points, p = hp, or more explicitly (2. y, 2, 1) = (he, hy, hz, hji
thus, we can take any transformation matrix M and multiply it by an arbitrary
constant because M{Ap) = (M)p = Mp. For this reason, we can multiply the
perspective matrix by n to make it a little prettier:

n 0] 1]

i] 0
My = 0 0 n+f —fn
0o 1 0

Sometimes we will want to take the inverse of M, for example to bring a screen
coordinate plus = back to the original space, as we might want to do for picking.
The inverse is

10 0 o0
g &2 0 i}

=l 1
My"=1pg 0 o 1
u [I ...?I_ Tid

As mentioned earlier, the effect of a homogeneous transformation matrix does
not change if we multiply it by a constant. The same applies to an inverse matrix;
a matrix and its inverse need only produce any diagonal matrix with identical
values along the diagonal. So the inverse matrix above is the inverse of any of
our perspective matrices. An alternative inverse maitrix is found by multiplying

7.3. Perspective Projection 171

by nf:
F o o 0
1 _ (D F O 0
M, 00 0 fn

0 0 =1 n+f

The beauty of the perspective matrix is, that once we apply it, we can use an
orthographic transform 1o get to the canonical view volume. Thus, all of the
orthographic machinery applies, and all that we have added is one matrix and one
divide operation. It is also heartening that we are not “wasting” the bottom row
of our four by four matrices!

One issue, however, is how are b, r determined for perspective? They iden-
tify the “window” through which we look. Since the perspective matrix does not
change the values of = and y on the = = n plane, we can specify (I, r, b, £) on that
plane.

We would like to integrate the perspective matrix into our orthographic in-
frastructure. A key point is that the perspective matrix assumes we are looking up
the — z-axis, s0 it cannot be applied until after the viewing matrix M, has been
applied. So the full set of matrices for perspective viewing is

M = M,M,M.,..
The resulting algorithm is:

compute M,
compute M,
compute M,
M = M MM,
for each line segment (a,, b;) do
p = Ma,
q = Mb,
drawline(zp, /i, Up g Tg By g)

Mote that the only change other than the additional matrix is the divide by the
homogeneous coordinate .

You might have the misgiving that the perspective matrix changes the value
of the homogeneous coordinate, so the move and scale might no longer work
properly. However, note that for a move on a homogeneous point we have

1 0 0 tg] |he h 4 Dty T+t
01 0 ¢ (hyl _ [hy+hty |yt
D01 & [ke| = |hetne | MBS L o

00 0 1 ke h I

172 7. Viewing

Similar effects are true for other transforms (see the exercise at the end of the
chapter).

The matrix Mijeciion. commonly called the projection matrix, is the product
of the matrix in Equation 7.3 and M,.:

-% 0 E 0

o 0 &/ 5 o
projection =

2

Lo 0 1 0

This or similar matrices often appear in documentation, and they are less mysteri-
ous when one realizes that they are usually the product of a few simple matrices.
Many APls such as OpenGL (Shreiner, Neider, Woo, & Davis, 2004) use the
same canonical view volume as presented here. They also usually have the user
specify the absolute values of nn and f. The projection matrix for OpenGL is

E: T
2
0 3 0
\IIEH]:“G_!_E
i i nj+ 2 i,
fj—| =
Lo 0 -1 0 |

Other APIs set n and f to 0 and 1, respectively. Blinn (J. Blinn, 1996) recom-
mends making the canonical view volume [0, 1]* for efficiency. All such decisions
will change the the projection matrix slightly.

7.4 Some Properties of the Perspective Transform

An important property of the perspective transform is that it takes lines to lines
and planes to planes. In addition, it takes line segments in the view volume to line
segments in the canonical volume. To see this, consider the line segment

q+tQ—q).

When transformed by a 4 by 4 matrix M, it is a point with possibly varying
homogeneous coordinate;

Mg+ 4MQ-Mg)=r+i{R~-T1).

7.5. Field-of-View 173

The homogenized 3D line segment is

r+HR —r)
T T 1.7
Ty — (E03
If Equation 7.7 can be rewritten in a form
r R r
- tl—-—, 7.8
10 (- 1) 18)

then all the homogenized points lie on a 3D line. Brute force manipulation of
Equation 7.7 yields such a form with
2 fi Rt y
by (7.9
I = tha =)
It also turns out that the line segments do map to line segments preserving the
ordering of the points (Exercise 8), i.e., they do not get reordered or “torn.”
A byproduct of the transform taking line segments o line segments is that
it takes the edges and vertices of a triangle to the edges and vertices of another
triangle. Thus, it takes triangles to triangles and planes o planes.

7.5 Field-of-View

While we can specify any window using the (I, r, b, 1) and n values, sometimes
we would like to have a simpler system where we look through the center of the
window. This implies the constraint that

If we also add the constraint that the pixels are square, i.e., there is no distortion
of shape in the image, then the ratio of r to ¢ must be the same as the ratio of the
number of horizontal pixels to the number of vertical pixels:

T

Ty !

Once n, and n,, are specified, this leaves only one degree of freedom. That is
often set using the field-af-view shown as & in Figure 7.14. This is sometimes
called the vertical field-of-view to distinguish it from the angle between left and
right sides or from the angle between diagonal comers. From the figure we can
see that

174 7. Viewing

U= +r, v=sf, w=n}
U= -1, v=-t w=n}

Figure 7.14. The field-of-view (¢ is the angle from the bottom of the screen to the top of the
screen as measured from the eye.

If n and @ are specified, then we can derive ¢ and use code for the more general
viewing system. In some systems, the value of # is hard-coded to some reasonable
vilue, and thus we have one fewer degree of freedom.

Frequently Asked Questions
« |s orthographic projection ever useful in practice?

It is useful in applications where relative length judgements are important. It can
also yield simplifications where perspective would be too expensive as occurs in
some medical visualization applications.

» The tessellated spheres | draw in perspective look like ovals. s this a
bug?

No. It is comrect behavior, If vou place your eye in the same relative position to
the screen as the virtual viewer has with respect to the viewport, then these ovals
will look like circles because they themselves are viewed atl an angle,

» Does the perspective matrix take negative = values to positive z-values
with a reversed ordering? Doesn't that cause trouble?

Yes. The equation for transformed = is

z'r='n.-|—f—'r—n.

=

S0 z = ¢ is transformed to 2* = —ocand z = —e is transformed 1o z = e,
So any line segments that span =z = {0 will be “torn™ although all points will be

7.5. Field-of-View 175

projected to an appropriate screen location, This tearing is not relevant when all
objects are contained in the viewing volume, This is usually assured by cfipping
to the view volume. However, clipping itself is made more complicated by the
tearing phenomenon as is discussed in Chapter 12,

Notes

Most of the discussion of viewing matrices is based on information in Real-Time
Rendering (Miller & Haines, 1999), the OpenGL Programming Guide (Shreiner
et al., 2004), Compurer Graphics (Hearn & Baker, 1986), and 3D Game Engine
Design (Eberly, 2000).

Exercises

1. Show algebraically that the perspective matrix preserves order of = values
within the view volume,

2. For a four by four matrix whose top three rows are arbitrary and whose bot-
tom row is (0,0.0.1), show that the points (@,y,2.1) and
(Fea, hy, bz,) transform to the same point after homogenization,

3. Verify that the form of M ! given in the text is correct.

4. Verify that the full perspective to canonical matrix Mgjecyon takes (1, ¢, n)
to(1,1,1).

3. Write down a perspective matrix forn =1, f = 2,

6. For the point p = (x.y, 2, 1), what are the homogenized and unhomoge-
nized result for that point transformed by the perspective matrix in Problem
3?

7. For the eye position e = (1, 1,0), a gaze vector g = (0, =1, 0), and a view-
up vector t = (1,1,0), what is the resulting orthonormal uvw basis used
for coordinate rotations?

8. Show, that for a perspective transform, line segments that start in the view
volume do map to line segments in the canonical volume after homogeniza-
tion. Further, show that the relative ordering of points on the two segments
is the same. Hint: show that the f({!) in Equation 7.9 has the properties
F101 =0, f(1) = 1. the derivative of f is positive for all t € [0, 1], and the
homogeneous coordinate does not change sign.

176

8

Hidden Surface Elimination

While we know how to get a single triangle onto the screen by projecting its
vertices from 3D to the canonical view volume, we will achieve more realism if
we also do hidden surface elimination, where only the closest surface is visible
to the viewer. This can be achieved through numerous methods: we only cover
the two most commonly used ones here: BSP trees (Fuchs, Kedem, & MNaylor,
[980)) and z-buffering (Catmull, 1975). Ray tracing can also be thought of as a
hidden surface algorithm. but it will be discussed in its own chapter since it does
not integrate well into the standard project-and-rasterize process, There are many
other hidden surface algorithms (Sutherland, Sproull. & Schumacker, 1974), but
few besides those three are used in practice.

8.1 BSP Tree

If we are making many images of the same geometry from different viewpoints,
as is ofien the case for applications such as games, we can use a binary space
partitioning (BSP) tree algorithm to order the surfaces from front to back. The
key aspect of the BSP tree 15 that it uses a preprocess to create a data structure that
is usetul for any viewpoint. So, as the viewpoint changes, the same data structure
is used without change.

177

Figure 8.2. A cycle ooours
if a global back-to-front or-
daring is not possible for a
particular eyve position,

178 8. Hidden Surface Elimination

Figure 8,1. A painter's algorthm starts with & blank image and then draws the scene one
object at a tima from back-to-front, overdrawing whatever is already there. This automatically
eliminates hidden surfaces,

8.1.1 Overview of BSP Tree Algorithm

The BSP tree algorithm is an example of a painter's algorithm. A painter's algo-
rithm draws every object from back-to-front, with each new polygon potentially
overdrawing previous polygons, as is shown in Figure 8.1, It can be implemented
as follows:

sort objects back to front relative 1o viewpoint

for each object do

draw object on screen

The problem with the first step (the sort) is that the refative order of multiple
objects is not always well defined, even if the order of every pair of objects is.
This problem s illustrated in Figure 8.2 where the three triangles form a evele:

B.1. BSP Tree 175

The BSP tree algorithm works on any scene composed of polygons where
no polygon crosses the plane defined by any other polygon. This restriction is
then relaxed by a preprocessing step. For the rest of this discussion, triangles are
assumed 1o be the only primitive, but the ideas extend to arbitrary polygons.

The basic idea of the BSP tree can be illustrated with two triangles, T and T4,
We first recall (see Section 2.7) the implicit plane equation of the plane containing
Ti: filp) = 0. The key property of implicit planes that we wish to take advantage
of 1s that for all points p* on one side of the plane, fi(p") > 0: and for all points
p~ on the other side of the plane, fi{p) < (. Using this property, we can find
out on which side of the plane T, lies. Again, this assumes all three vertices of
T, are on the same side of the plane. For discussion, assume that T; is on the
Siip) < 0 side of the plane, Then, we can draw T and T3 in the right order for
any evepoint e:

if (file) <) then
draw T}
draw T3
else
draw T3
draw T

The reason this works is that if T and e are on the same side of the plane con-
taining 77, there is no way for T to be fully or partially blocked by T as seen
from e, so it is safe wo draw T first. If e and T are on opposite sides of the
plane containing T, then T cannot fully or partially block T, and the opposite
drawing order is safe (Figure 8.3).

plane containing T

T |

>

Figure 8.3. When e and T are on opposite sides of the plane containing T;, then it is sale
to draw Tafirstand T, second, If e and T are on the same side of the plane, then T; should
be drawn before To. This is the core idea of the BSF tree algorithm,

180 8. Hidden Surface Elimination

This observation can be generalized to many objects provided none of them
span the plane defined by 7. If we use a binary tree data structure with T)
as root, the negarive branch of the wee contains all the wiangles whose
vertices have f;(p) < (), and the posirivée branch of the tree contains all the
triangles whose vertices have fi{p] > (. We can draw in proper order
as follows:

function draw(bspiree tree, point e}

if (tree.cmpty) then
return

if (fireerom(®] < () then
drawitree.plus, e)
rasterize tree.triangle
drawi tree.minus, e)

else
drawitree. minus, e)
rasterize tree.triangle
draw(tree.plus, e)

The nice thing about that code is that it will work for any viewpoint e, so the
tree can be precomputed. Note that, if each subtree is itsell a tree, where the root
triangle divides the other triangles into two groups relative to the plane containing
it, the code will work as is. It can be made slightly more efficient by terminat-
ing the recursive calls one level higher, but the code will still be simple. A tree
illustrating this code is shown in Figure 8.4, As discussed in Section 2.7.2, the
implicit equation for a point p on a plane containing three non-colinear poinis a,
b, and ¢ is

fip)=((b—a)x(c—-a)) (p-a)=0. (8.1)

It can be faster 1o store the (4, B, C, D)) of the implicit equation of the form
flr.y,z)=Ac+By+Cz+D=10. (8.2)

Equations 8.1 and 8.2 are equivalent, as is clear when you recall that the gradient
of the implicit equation is the normal to the triangle. The gradient of Equation 8.2
is n = (A, B, (") which is just the normal vector

n=(b—a)=(e—a)
We can solve for [2 by plugging in any point on the plane, e.g., a:
D = _A-Tn. o= BI.I'.: _Cz‘ll

=-—n-a

a.1. BSP Tree 181

/ T, positive
fi=0 i - e
I L Sl nagative
| T,
|
oo r:r"""-jl-ﬁ
' L

Figure B.4. Three triangles and a BSP tree that is valid for them. The “positive” and
“negative” are encoded by right and left subtree position, respectively.

This suggests the form:

flp)=n-p-n-a
=n-(p—a)
=),

which is the same as Equation 8.1 once you recall that n is computed using the
cross product. Which form of the plane equation you use and whether you store
only the vertices, n and the vertices, or n, [2, and the vertices, is probably a matter
of taste—a classic time-storage tradeoff that will be settled best by profiling. For
debugging. using Equation 8.1 is probably the best,

The only issue that prevents the code above from working in general is that
one cannol guarantee that a triangle can be uniquely classified on one side of a
plane ar the other. It can have two vertices on one side of the plane and the third
on the other. Or it can have vertices on the plane. This is handled by splitting the
triangle into smaller triangles using the plane to “cut™ them.

B.1.2 Building the Tree

If none of the triangles in the dataset cross each other’s planes, so that all triangles
are on one side of all other triangles, a BSP wee that can be raversed using the

/]

Figure 8.5. When a fri-
angle spans a plang, there
will be ona vertex on one
side and two on the other,

182 8. Hidden Surface Elimination

code above can be built using the following algorithm:
tree-root = node(T)
foriec {2,..., N} do
tree-root.add(T;)

function add (tnangle T')
it (f{a) < Uand f(b) < {land f{e} < 0) then
if (negative subtree is empty) then
negative-subtree = node(T")
clse
negative-subtree.add (T7)
elseif (f(a) > Oand f(b) = Oand f(c) = () then
if positive subtree is empty then
positive-subtree = node(T')
clse
positive-subtree.add (T7)
clse
we have assumed this case is impossible

The only thing we need to fix is the case where the triangle crosses the dividing
plane, as shown in Figure 8.5, Assume, for simplicity, that the triangle has vertices
a and b on one side of the plane, and verlex ¢ is on the other side. In this case,
we can find the intersection points A and B and cut the triangle into three new
triangles with vertices

Tj = {ﬂ, by, A.}
Ty = (b, B, A),
T3 = {A, BT‘:]‘.

us shown in Figure 8.6, This order of vertices is important so that the direction
of the normal remains the same as for the original triangle. I we assume that
fle) = 0, the following code could add these three triangles to the tree assuming
the positive and negative subtrees are not empty;

positive-subtree = node (17
positive-subtree = node (713)
negative-subtree = node (1)

A precision problem that will plague a naive implementation occurs when a vertex
is very near the splitting plane. For example, if we have two vertices on one side of
the splitting plane and the other vertex is only an extremely small distance on the
other side, we will create a new triangle almost the same as the old one, a triangle

8.1. BSF Tree 183

that is a sliver, and a triangle of almost zero size. It would be better to detect this
as a special case and not split into three new triangles. One might expect this case
1o be rare, but because many models have tessellated planes and triangles with
shared vertices, it occurs frequently, and thus must be handled carefully. Some
simple manipulations that accomplish this are:
Tunction add| trangle 7" |
fa= f(a)
fb= fib]
fo= f{e)
if (ahis{ fz] < ¢) then
fa=10
if (absl fb) < ¢) then
k=10
if {ahs{ fr) < ¢} then
fc=10
if { fu< Dandtb < 0 and fc < 0) then
it (negative subtree is empty | then
negative-subtree = node(1")
else
negative-subtree.add(7T7)
else if (fo = 0 and fb = 0 and fc = () then
il (positive subtree is empty) then
pasitive-subtree = node(77)
else
positive-subtree. add| T}
else
cut triangle into three triangles and add to each side
This takes any vertex whose [value is within e of the plane and counts it as
positive or negative, The constant ¢ is a small positive real chosen by the user. The
technigue above is a rare instance where testing for floating point equality is useful
and works because the zero value is set rather than being computed, Comparing
for equality with a computed fAoating point value 15 almost never advisable, but
we are not doing that,

8.1.3 Cuiting Triangles

Filling out the details of the last case “cut triangle into three triangles and add to
each side” is straightforward, but tedious. We should take advantage of the BSP
tree construction as a preprocess where highest efficiency is not key. Instead, we

a /

Figure 8.6. When &a tri-
angle Is cut, we break it
into three triangles, none
of which span the cutting
plane.

184 B. Hidden Surface Elimination

should attempt to have a clean compact code, A nice trick is to force many of the
cases into one by ensuring that ¢ is on one side of the plane and the other two
vertices are on the other, This is easily done with swaps. Filling out the details
in the final else statement (assuming the subtrees are non-empty for simplicity)
gives:
it (fa = fr=0)then

swap(fb. fe]

swap(b, ¢)

swap(fa, fb)

swap(a, b}

else if (fb= fo = () then
swap(fa. fr)
swap(a, ¢}
swap{ fa. fb)
swap(a, b)

compute A

compute B

T, =(a,b.A)

13 = (b, B, A}

T3=(A,B.c)

if { fe = 0] then
negative-subtree.add(T))
negative-subtree.add (T)
positive-subtree.add(T)

else
positive-subtree.add(T)
positive-subtree.add(74)
negative-subtree.add (1)

This code takes advantage of the fact that the product of @ and b are positive if they
have the same sign—thus, the first if statement, If vertices are swapped, we must
do two swaps 1o keep the vertices ordered counterclockwise. Note that exactly
one of the vertices may lie exactly on the plane, in which case the code above will
work, but one of the generated triangles will have zero area. This can be handled
by ignoring the possibility, which is not that risky, because the rasterization code
must handle zero area triangles in screen space (i.e., edge-on triangles), You can
also add a check that does not add zero-area triangles to the tree. Finally, you can
put in a special case for when exactly one of fa, b, and fc is zero which cuts the
triangle into two triangles,

8.1, BSP Trea 185

To compute A and B, a line segment and implicit plane intersection is needed.
For example, the parametric line connecting a and c is

p(t) = a+t(c — a).

The point of intersection with the plane n - p + D = (0 is found by plugging p(t)
into the plane equation:

n-(a+tlc—a))+ D=0

and solving for £ adD

f=_n-({:—a)'

Calling this solution f 4, we can write the expression for A:
A=a+tty(c—a)

A similar computation will give B.

8.1.4 Optimizing the Tree

The efficiency of tree creation is much less of a concern than tree traversal becanse
it is a preprocess. The traversal of the BSP tree takes time proportional to the
number of nodes in the tree. (How well balanced the tree is does not matter.)
There will be one node for each triangle, including the triangles that are created
as a result of splitting, This number can depend on the order in which triangles
are added to the tree. For example, in Figure 8.7, if T} is the root, there will be
two nodes in the tree, but if T is the root, there will be more nodes, because T,
will be split.

It is difficult to find the “best” order of triangles to add to the tree. For N
triangles, there are V! orderings that are possible. So trying all orderings is not
vsually feasible. Alternatively, some predetermined number of orderings can be
tried from a random collection of permutations, and the best one can be kept for
the final tree.

The splitting algorithm described above splits one triangle into three trian-
gles. It could be more efficient to split a triangle into a triangle and a con-
vex quadrilateral. This is probably not worth it if all input models have only
triangles, but would be easy to support for implementations that accommodate

arbitrary polygons.

Figure 8.7. Using T3
as the root of a BSP tree
will result in a frea with two
nodes. Using Ts as the root
will require a cut and thus
make a larger tree.

-

186 8. Hidden Surface Elimination

8.2 Z-Buffer

The z-buffer algorithm can be found in hardware on almost every video game and
graphics PC. However, it is also a useful software algorithm (Cook, Carpenter,
& Catmull, 1987). The z-buffer takes advantage of the fact that our real problem
is to find the closest polvgon to the center of each pixel; this can be an easier
problem than finding a true depth order in continuons screen space.

8.2.1 Z-Buffer Algorithm

The z-buffer algorithm is remarkably simple. At each pixel, we store a real z value
that is the distance 1o the closest triangle rasterized so far. When we rasterize 2
triangle, as discussed in Section 3.6, we can use the baryeentric coordinates 1o
interpolate the depth values of the vertices to each pixel. We only write the rgh
and = values into the raster if the = value is closer to the viewer than what is
already in that pixel. The z-buffer is first initialized to hold the farthest value that
can be represented. For this discussion, we will assume = is positive, [f your
implementation uses negative z, as in the last chapter, then yvou should change the
less-than test below to a greater than test. We use the following operation in place
of a straight write of the rgb value:
function setpixel(int 1, int j, rgb ¢, real z |
if (z < z-buffer(i, j)) then
z-buffer(i, j) =2
screen(t, j)=¢
The simplicity of the algorithm suggests why the z-buffer is well suited to hard-
ware implementation. The computation 15 straightforward, provided we have fast
memary o use for the “z-buffer”

The final result of the z-buffer does not depend on triangle rasterization order,
as is shown in Figure 8.8. An exceptional case, however, is when two triangles
tie in z-depth for a given pixel. In that case, any of a number of conventions can
hold, the most common of which is to assume the last triangle drawn has priority.
It can be a better idea to leave the resolution of ties undefined so that optimization
can reorder rasterization.

8.2.2 Integer Z-Buffer

In practice, the = values stored in the buffer are non-negative integers. This is
preferable to true floats because the fast memory needed for the z-buffer is some-
what expensive and is worth keeping to a minimum.

8.2. Z-Buffer 187

Figure 8.8. A z-buffer rasterizing two triangles in each of two possible ordars, The first
triangle is fully rasterized. The second triangle has every pixel computed, but for three of the
pixats the depth-contest is lost, and thase plxels are not drawn, The final image is the same
regardless.

188 8. Hidden Surface Elimination

The use of integers can cause some precision problems. If we use an integer
range having B values {0,1,..., B — 1}, we can map 0 to the near clipping plane
z = nand B — 1 to the far clipping plane = = f. Note, that for this discussion, we
assume 2, n, and f are positive. This will result in the same results as the negative
case, but the details of the argument are easier to follow. We send each =z value to
a “bucket” with depth Az = (f —n)/B. We would not use the integer z-buffer if
memary were nol a premium, so it is useful to make 5 as small as possible.

If we allocate b bits to store the z-value, then B = 2", We need enough bits to
make sure any triangle in front of another triangle will have its depth mapped to
distinct depth bins.

For example, if you are rendering a scene where triangles have a separation of
at least one meter, then Az < 1 should yield images without artifacts. There are
two ways o make Az smaller: move n and f closer together or increase b. If b is
fixed, as it may be in APIs or on particular hardware platforms, adjusting n and f
is the only option.

The precision of z-buffers must be handled with great cire when perspective
images are created. The value Az above is used afrer the perspective divide.
Recall from Section 7.3 that the result of the perspective divide is

fn
z=n+f- ;.,.._

The actual bin depth is related to z,,, the world depth, rather than z, the post-
perspective divide depth. We can approximate the bin size by differentiating both
sides:

e fnlz, :

Az
3

Bin sizes vary in depth. The bin size in world space is

22 Az
Az m2 l}n .
Mote that the quantity Az is as discussed before. The biggest bin will be for
z' = f, where

Azm 182
1! 1 2

Note that choosing n = (), a natural choice if we don’t want to lose objects right
in front of the eve, will result in an infinitely large bin—a very bad condition. To
make Az as small as possible, we want to minimize f and maximize n. Thus,
it is always important to choose n and f carefully.

8.2. Z-Buffer 189

Frequently Asked Questions

|5 a uniform distance z-buffer better than the standard one that includes
perspective matrix non-linearities?

It depends. One “feature™ of the non-linearities is that the z-buffer has more res-
olution near the eye and less in the distance. I a level-of-detail system is used,
then geometry in the distance is coarser and the “unfaimess” of the z-buffer can
be a good thing.

» |5 a software z-buffer ever useful?

Yes. Most of the movies that use 3D computer graphics have used a variant of the
software z-buffer developed by Pixar (Cook et al., 1987) .

Exercises

1. Given N triangles, what is the minimum number of triangles that could be
added 1o a resulting BSP tree? What is the maximum number?

2. Suppose you are designing an integer z-buffer for Aight simulation where
all of the objects are at least one meter thick, are never closer to the viewer
than 4 meters, and may be as far away as 100 km. How many bits are
needed in the z-buffer 10 ensure there are no visibility errors? Suppose that
visibility errors only matter near the viewer, i.e., for distances less than 100
meters. How many bits are needed in that case?

m

9

Surface Shading

To make objects appear to have more volume, it can help to use shading, i.e., the
surface is “painted” with light. This chapter presents the most common heuristic
shading methods. The first two, diffuse and Phong shading, were developed in the
1970s and are available in most graphics libraries. The last, artistic shading, uses
artistic conventions to assign color to objects. This creates images reminiscent of
technical drawings, which is desirable in many applications,

9.1 Diffuse Shading

Many objects in the world have a surface appearance loosely described as “matte,”
indicating that the object is not at all shiny. Examples include paper, unfinished
wood, and dry unpolished stones. To a large degree, such objects do nol have a
color change with a change in viewpoint, For example, if you stare at a partic-
ular point on & piece of paper and move while keeping your gaze fixed on that
point, the color at that point will stay relatively constant. Such matte objects can
be considered as behaving as Lambertian objects. This section discusses how 1o
implement the shading of such objects. A key point is that all formulas in this
chapter should be evaluated in world coordinates and not in the warped coordi-
nates after the perspective transform is applied. Otherwise, the angles between
normals are changed and the shading will be inaccurate,

199

Figure 8.1. The geometry
for Lambert's Law. Both n
and 1 are unit vectors,

Figure 9.2, When a sur-
face points away from the
light, it should receive no
light. This case can be ver-
ified by checking whether
the dot product of | and n is
negative,

192 8. Surface Shading

9.1.1 Lambertian Shading Model

A Lambertian object obeys Lambert’s cosing law, which states that the color ¢
of a surface is proportional to the cosine of the angle between the surface normal
and the direction to the light source (Gouraud, 1971}

coxcosd,

or in vector form, cocm-l,

where n and 1 are shown in Figure 9.1. Thus, the color on the surface will vary
according to the cosine of the angle between the surface normal and the light
direction. Note that the vector 1is typically assumed not to depend on the location
of the object. That assumption is equivalent to assuming the light is “distant™
relative to object size. Such a “distant” light is often called a directional fight,
because its position is specified only by a direction.

A surface can be made lighter or darker by changing the intensity of the light
source or the reflectance of the surface. The diffuse reflectance o, 15 the fraction
of light reflected by the surface. This fraction will be different for different color
components. For example, a surface is red if it reflects a higher fraction of red
incident light than blue incident light. If we assume surface color is proportional
to the light reflected from a surface. then the diffuse reflectance ¢,—an RGB
color—must also be included:

oo opm e (9.1)

The right-hand side of Equation 9.1 is an RGB color with all RGB components in
the range [0, 1]. We would like to add the effects of light intensity while keeping
the RGB components in the range [0, 1|. This suggests adding an RGB intensity
term ¢; which itself has components in the range [0, 1]:

¢=¢c.cn- L (9.2}

This is a very convenient form, but it can produce RGB components for o that
are outside the range [0, 1], because the dot product can be negative. The dot
product is negative when the surface is pointing away from the light as shown in
Figure 9.2

The “max" function can be added to Equation 9.2 10 test for that case;

o= epoymax(0, - 1). (2.3)
Another way to deal with the “pegative™ light is to use an absolute value:

e=epyn- 1, (9.4)

9.1. Diffuse Shading 193

While Equation 9.4 may seem physically implausible, it actually corresponds to
Equation 2.3 with two lights in opposite directions. For this reason it is often
called nwo-sided lighting (Figure 9.3).

9.1.2 Ambient Shading

One problem with the diffuse shading of Equation 9.3 is that any point whose
normal faces away from the light will be black. In real life, light is reflected all
over, and some light is incident from every direction. In addition, there is often
skylight giving “ambient” lighting. One way to handle this is to use several light
sources. A common trick is to always put a dim source at the eye so that all
visible points will receive some light. Another way is to use two-sided lighting
as described by Equation 9.4. A more common approach is to add an ambient
term (Gourand, 1971), This is just a constant color term added to Equation 9.3:

e=¢p(6a + eymax {0, m-1)) .

Intuitively, vou can think of the ambient color ¢, as the average color of all sur-
faces in the scene, If you want to ensure that the computed RGB color stays in
the range [0, 1]%, then ¢, + & < (1,1,1). Otherwise your code should “clamp”
RGB values above one to have the value one,

89.1.3 Vertex-Based Diffuse Shading

If we apply Equation 9.1 to an object made up of triangles, it will typically have a
faceted appearance. Ofien, the triangles are an approximation to a smooth surface.
To avoid the faceted appearance, we can place surface normal vectors at the ver-
tices of the triangles (Phong, 1975), and apply Equation 9.3 at each of the vertices
using the normal vectors at the vertices (see Figure 9.4), This will give a color
at each triangle vertex, and this color can be interpolated using the barycentric
interpolation described in Section 3.6.

One problem with shading at triangle vertices is that we need to get the nor-
mals from somewhere. Many models will come with normals supplied. If you
tessellate your own smooth model, you can create normals when you create the
triangles. If you are presented with a polygonal model that does not have nor-
mals at vertices and you want to shade il smoothly, you can compute normals by
a variety of heuristic methods. The simplest is to just average the normals of the
triangles that share each vertex and use this average normal at the vertex. This

4

Figure 9.3. Using Equa-
tion 8.4, the two-sided light-
ing formula, is equivalent
to assuming two opposing
light sources of the same
color.

Figure 9.5. The geome-
try for the Phong illumina-
fion model. The eye should
see a highlight if = is small.

184 9. Surface Shading

l

Figure 8.4. A circle (left) is approximated by an octagan (right). Varlex normals record the
surface normal of the original curva,

average normal will not automatically be of unit length, so you should convert it
1o a4 unit vector before using it for shading,

9.2 Phong Shading

Some surfaces are essentially like matte surfaces, but they have highfights. Exam-
ples of such surfaces include polished tile Aoors, gloss paint, and whiteboards,
Highlights move across a surface as the viewpoint moves. This means that we
must add a unit vector e toward the eve into our equations. If you ook carefully
at highlights, you will see that they are really reflections of the light; sometimes
these reflections are blurred, The color of these highlights is the color of the
light—the surface color seems to have little effect. This is because the reflection
occurs at the ofiject’s surface, and the light that penetrates the surface and picks
up the object’s color is scattered diffusely.

89.2.1 Phong Lighting Madel

We want to add a fuzzy “spot” the same color as the light source in the right place.
The center of the dot should be drawn where the direction e to the eye “lines” up
with the natural direction of reflection r as shown in Figure 9.5. Here “lines up”
is mathematically equivalent to “where ¢ is zero”. We would like to have the

9.2. Phong Shading 195

highlight have some non-zero area, so that the eve sees some highlight wherever
o is small.

Given r. we'd like a heuristic function that is bright when e = r and falls off
eradually when e moves away from r. An obvious candidate is the cosine of the
angle between them:

c=mle-r),

There are two problems with using this equation. The first is that the dot product
can be negative. This can be solved computationally with an “if"™" statement that
sets the color to zero when the dot product is negative. The more serious problem
is that the highlight produced by this equation is much wider than that seen in real

p=64 p=256

p=128

Figure 9.6. The effect of the Phong exponent an highlight characteristics, This uses
Equation 9.5 for the highlight. There is also a diffuse component, giving the objects a shiny
but non-metallic appearance. Image courtesy of Nate Robins. (See also Plate IV.)

Figure 8.7. The geometry
for calculating the vector r.

Figure 9.8. The unit vec-
tor h is halfway between |
and .

196 8. Surface Shading

life. The maximum is in the right place and it is the right color, but it is just too
big. We can narrow it without reducing its maximum color by raising to a power:

¢ =cymax(0, e - r)". (9.5)

Here p is called the Phong exponent; it is a positive real number (Phong, 1975).
The effect that changing the Phong exponent has on the highlight can be seen in
Figure 9.6,

To implement Equation 9.5, we first need to compute the unit vector r. Given
unit vectors 1 and n, r is the vector 1 reflected about n. Figure 9.7 shows that this
vector can be computed as

r=-1+2{1-n)n, (9.6

where the dot product is used to compute cos .

An alternative heuristic model based on Equation 9.5 eliminates the need 1o
check for negative values of the number used as a base for exponentiation (Wam,
1983). Instead of r, we compute h, the unit vector halfway between 1 and e

iFigure 9.8):
e+l

e+
The highlight occurs when h is near n, i.e., when cosw = h - nis near 1. This
suggests the rule:
c=g¢l(h-n)?. (9.7

The exponent p here will have analogous control behavior to the exponent in
Equation 9.5, bul the angle between h and n is half the size of the angle between
e and r, so the details will be slightly different, The advantage of using the cosine
between n and h is that it is always positive for eye and light above the plane.
The disadvantage is that a square root and divide is needed to compute h.

In practice, we want most materials to have a diffuse appearance in addition
to a highlight. We can combine Equations 9.3 and 9.7 to get

r=cp(eg +omax (0,n-1)) + ¢(h-n)? (9.8)
If we want to allow the user to dim the highlight, we can add a control term o
e = ¢ (ea +omax (0,0 1)) + ¢ep(h-n)P. 9.9)

The term ¢, is a RGB color, which allows us to change highlight colors. This is
useful for metals where ¢, = ¢, because highlights on metal take on a metallic
color, In addition, it is often useful to make ¢, a neutral value less than one, so
that colors stay below one. For example, setting ¢, = 1 — M where M is the
maximum component of ¢ will keep colors below one for one light source and
no ambient term.

9.3. Artistic Shading 197

9.2.2 Surface Normal Vector Interpolation

Smooth surfaces with highlights tend to change color quickly compared to Lam-
bertian surfaces with the same geometry, Thus, shading at the normal vectors can
generate disturbing artifacts.

These problems can be reduced by interpolating the normal vectors across the
polygon and then applying Phong shading at each pixel. This allows you to get
good images without making the size of the triangles extremely small. Recall
from Chapter 3, that when rasterizing a trniangle, we compute barycentric coordi-
nates (o, 4,) to interpolate the vertex colors oy, o1, co:

= oy + Bep + e, (9,10}
We can use the same equation to interpolate surface normals ngp, ny, and ng:
n = ang + 9ny 4+ “na. (9.11)

And Egquation 9.9 can then be evaluated for the n computed at each pixel. Note
that the n resulting from Equation 9.11 is usually not a unit normal. Better visual
results will be achieved if it is converted to a unit vector before it is used in shading
computations. This type of normal interpolation is often called Phong normal
interpolation (Phong, 1975),

9.3 Artistic Shading

The Lambertian and Phong shading methods are based on heuristics designed o
imitate the appearance of objects in the real world. Artistic shading 1s designed to
mimic drawings made by human artists { Yessios, 1979; Dooley & Cohen, 199(0;
Saito & Takahashi, 1990; L. Williams, 1991). Such shading seems 1o have advan-
tages in many applications. For example, auto manufacturers hire artists to draw
diagrams for car owners’ manuals. This is more expensive than using much more
“realistic” photographs, so there is probably some intrinsic advantage to the tech-
nigques of artists when certain types of communication are needed. In this section,
we show how to make subtly shaded line drawings reminiscent of human-drawn
images. Creating such images is often called non-photorealistic rendering, but
we will avoid that term because many non-photorealistic technigues are used for
efficiency that are not related to any artistic practice.

9.3.1 Line Drawing

The most obvious thing we see in human drawings that we don't see in real life is
sithouertes. When we have a set of tmangles with shared edges, we should draw

198 9. Surface Shading

an edge as o silhouette when one of the two triangles sharing an edge faces toward
the viewer, and the other triangle faces away from the viewer. This condition can
be tested for two normals ny and ny by

draw silhouette if (e ny){e - ny) < 0,

Here e is a vector from the edge to the eye. This can be any point on the edge or
either of the triangles. Alternatively, if f;{p) = 0 are the implicit plane equations
for the two triangles, the test can be written

draw silhouette if fole) fi{e) < 0.

We would also like o draw visible edges of a polygonal model. To do this, we
can use either of the hidden surface methods of Chapter 8 for drawing in the
background color, and then draw the outlines of each triangle in black. This, in
fact, will also capture the silhouettes. Unfortunately, if the polvgons represent a
smooth surface, we really don’t want to draw most of those edges. However, we
might want to deaw all creases where there really is a corner in the geometry. We
can test for creases by using a hewristic threshold:

draw crease if (ny - ny) < threshold.

This combined with the silhouette test will give nice-looking line drawings,

9.3.2 Cool-to-Warm Shading

When artists shade line drawings, they often use low intensity shading to give
some impression of curve to the surface and to give colors to objects (Gooch,
Gooch, Shirley, & Cohen, 1998). Surfaces facing in one direction are shaded
with a cool color, such as a blue, and surfaces facing in the opposite direction
are shaded with a warm color, such as orange. Typically these colors are not
very saturated and are also not dark. That way, black silhouettes show up nicely.
Owerall this gives a cartoon-like effect. This can be achieved by setting up a
direction to a “warm"” light | and vsing the cosine to modulate color, where the
warmth constant k,, is defined on [0, 1]:
1+mn-1

b = 7 :

The color ¢ is then just a linear blend of the cool color ¢, and the warm color ¢,,;

e=kyew + (1 — kg dee.

9.3, Artistic Shading 199

Figure 8.9, Left: a Phong-iluminated image. Middle: cool-to-warm shading is not usetul
without silhouettes. Right cool-to-warm shading plus silhouettes. Image courtasy Amy
Gooch. (See also Plate V)

There are many possible e, and ¢, that will produce reasonable looking resulis.
A good starting place for a guess is

¢ = (0.4, 0.4, 0.7).

. = (L8, 0.6, 0.6)

Figure 9.9 shows a comparison between traditional Phong lighting and this tvpe
of artistic shading,

Frequently Asked Questions

» All of the shading in this chapter seems like enormous hacks. Is that
true?

Yes. However, they are carefully designed hacks that have proven useful in prac-
tice. In the long run, we will probably have better-motivated algorithms that in-
clude physies, psychology, and tone-mapping. However, the improvements in
image gquality will probably be incremental,

200 9. Surface Shading

« | hate calling pow(). Is there a way to avoid it when doing Phong lighting?

A simple way is to only have exponents that are themselves a power of two,
ie, 2, 4, 8 16, ... In practice, this is not a problematic restriction for most
applications. A look-up table is also possible, but will often not give a large
speed-up,

Exercises

1. The moon is poorly approximated by diffuse or Phong shading. What ob-
servations tell you that this is true?

2. Velvet is poorly approximated by diffuse or Phong shading. What observa-
tions tell you that this is true?

3. Why do most highlights on plastic objects look white, while those on gold
metal look gold?

10

Ray Tracing

Ray tracing is a method 0 produce realistic images; it determines visible sur-
faces in an image at the pixel level (Appel, 1968; Kay & Greenberg, 1979 Whil-
ted, 1980). Unlike the z-buffer and BSP tree, ray tracing operales pixel-by-pixel
rather than primitive-by-primitive. This tends to make ray tracing relatively slow
for scenes with large objects in screen space. However, it has a varety of nice
features which often make it the right choice for batch rendering and even for
some interactive applications.

Ray tracing's primary benefit is that it is relatively straightforward to com-
pute shadows and reflections. In addition, ray tracing is well suited 1o “walk-
throughs™ of extremely large models due to advanced ray tracing's low asympiotic
time complexity which makes up for the required preprocessing of the model
{Snyder & Barr, 1987; Muuss, 1995; Parker, Martin, et al., 1999; Wald, Slusallek,
Benthin, & Wagner, 2001).

In an interactive 3D program implemented in a conventional z-buffer environ-
ment, it is ofien useful to be able o select an ohject using a mouse. The mouse is
clicked in pixel (i, j) and the “picked” object is whatever object is “seen™ through
that pixel. If the rasterization process includes an object identification buffer, this
is just a matter of looking up the value in pixel (i, j) of that buffer. However.
if that buffer is not available, we can solve the problem of which object is vis-
ible vig brute force geometrical computation using a “ray intersection test.” In
this way, ray tracing is useful also to programmers who use only standard
graphics APIs.

2

202 10. Ray Tracing

This chapter also discusses distribution ray fracing (Cook, Porter, & Carpen-
ter, 1984}, where multiple random rays are sent through each pixel in an image to
simultaneously solve the antialiasing, soft shadow, fuzzy reflection, and depth-of-
field problems.

10.1 The Basic Ray-Tracing Algorithm

The simplest use of ray tracing is to produce images similar to those produced
by the z-buffer and BSP-tree algorithms. Fundamentally, those methods make
sure the appropriate object is “seen” through each pixel,and that the pixel color is
shaded based on that object’s maierial properties, the surface normal seen through
that pixel, and the light geometry.

Figure 10.1. Tha 30 window we look through is the same as in Chapter 7. The barders of
the window have simple coordinatas in the vww-coordinate system with respect to origin e.

Figure 10.1 shows the basic viewing geometry for ray tracing, which is the
same as we saw carlier in Chapter 7. The geometry is aligned to a avw coordinate
system with the origin at the eve location e. The key idea in ray tracing is 0
identify locations on the view plane at w = n that correspond to pixel centers, as
shown in Figure 10.2. A “ray.” really just a directed 3D line, is then sent from
e to that point. We then “gaze™ in the direction of the ray to see the first ohject
seen in that direction. This is shown in Figure 1003, where the ray intersects two
triangles, but only the first triangle hit, T2, is refurned.

10.2. Computing Viewing Rays 203

Q
Q

0o r:n|o

L

Figure 10.2. The sample points on the screen are mapped fo a8 similar array on the 30
window. A viewing ray is sent to each of thesa locations.

The structure of the basic ray tracing program is:

Compute u, v, w basis vectors
for each pixel do
compute viewing ray
find first object hit by ray and its surface normal n
set pixel color 1o value based on material, light, and n

The pixel color can be computed using the shading equations of the last chapter.

%Q

L —)

Figure 10.3. The ray is “traced” into the scene and the first ohject hit is the one seen through
the pixel. In this case, the triangle T; is raturmed.

10.2 Computing Viewing Rays

First we need 1o determine a mathematical representation for aray. A ray is really
Just an origin point and a propagation direction; a 31 parametric line is ideal for

Figure 10.4. The ray from
the eye to a point on the
“gCreen.

204 10. Ray Tracing

this. As discussed in Section 2.8.1, the 3D parametric line from the eye & 0 a
point 8 on the screen (see Figure 10.4) is given by

pit) =e+ils—e).

This should be interpreted as, “we advance from e along the vector (s —) a
fractional distance { to find the point p.” So given {, we can determine a point p.
Mote that p{()) = e, and p(1) = 5. Also note that for positive ¢, if t; < t2, then
pity) is closer to the eye than p(ts). Also, if ¢ < 0, then p(1) is “behind” the eve.
These facts will be useful when we search for the closest object hit by the ray that
is not behind the eve. Note that we are overloading the variable ¢ here which is
also used for the top of the screen’s v-coordinate.

To compute a viewing ray, we need to know e (which is given) and s. Finding
s may look somewhat difficult. In fact, it is relatively straightforward using the
same transform machinery we used for viewing in the context of projecting lines
anidl triangles.

First, we find the coordinates of s in the urw-coordinate system with origin e.
For all points on the screen, ws, = n as shown in Figure 10.2, The wr-coordinates
are found by the windowing transform that takes [—0.5, 1, —0.5]x [—0.5, n,—0.5]
to [, r] = [b]

i 4+ (.5
L:4.=H—[r—l]|J j,
i"!-:_-
- i =
b =bir (o =gy d 08
”‘U

where (i, j) are the pixel indices. This gives us s in urw-coordinates. By defini-
tion, we can convert to canonical coordinates:

8= 8+ U+ U,V + WW. (10.1)

Alernatively, we could use the matrix form (Equation 6.8);

g 1 4 0 =l VYo ®me ocmw 01 | s

Un| 01 0 4 ¥u Yo Y 0 Uy

=l 100 1 =z 2 Za oz A el ! (10.2)
1 0 06 0 1 0o o 0 1 1

which is just the matrix form of Equation 10,1, We can compose this with the
windowing transform in matrix form if we wished, but this is probably not worth
doing unless you like the matrix form of equations better.

10.3. Ray-Object Intersection 205

10.3 Ray-Object Intersection

Given a ray e + ted, we want to find the first intersection with any object where
t = 0. It will later prove useful to solve a slightly more general problem of
finding the first intersection in the interval [fy, ;). and using [0, 0o) for viewing
rays. We solve this for both spheres and triangles in this section. In the next
section, multiple objects are discussed,

10.3.1 Ray-Sphere Intersection

Given a ray plf) = e + id and an implicit surface f(p) = 0. we'd like to know
where they intersect. The intersection points occur when points on the ray satisfy
the implicit equation

fip(t)) =0.
This is just
fle+td) =1,
A sphere with center ¢ = (x..y.. z.) and radius I? can be represented by the

implicit equation
(z—z) +(y—p)+(z—2) —R =0
We can write this same equation in vector form:
(p—e)-(p—e)— R*=0.

Any point p that satisfies this equation is on the sphere. If we plug points on the
ray p(i} = e + td into this equation, we can solve for the values of { on the ray
that yield points on the sphere:

(e+td—c) (e+td—c)— R =0,
Rearranging terms vields
(d-d)t* +2d-(e—c)t+(e—c)-(e—c)—R* = 0.

Here, everything is known except the parameter ¢, so this is a classic quadratic
equation in f, meaning it has the form

At* + Bt+C=0.

The solution to this equation is discussed in Section 2.2, The term under the
square root sign in the quadratic solution, B2 — 4AC, is called the discriminant

Figure 10.5. The ray hits
the plane containing the iri-
angle at point p.

206 10. Ray Tracing

and tells us how many real solutions there are. If the diseriminant is negative, its
square root is imaginary and there are no intersections between the sphere and the
line. If the discriminant is positive, there are two solutions: one solution where
the ray enters the sphere and one where it leaves, If the discriminant is zero, the
rity grazes the sphere touching it at exactly one point. Plugging in the actual terms
for the sphere and eliminating the common factors of two, we get

~d-(e—c)+/(d:(e=c)’ - (d-d)((e—c) (e~ c) -)

t= dd)

In an actual implementation, you should first check the value of the discriminant
before computing other terms. 1f the sphere is used only as a bounding object for
more complex objects, then we need only determine whether we hit it; checking
the discriminant suffices.

As discussed in Section 2.7.1, the normal vector at point p is given by the
gradient n = 2{p — ¢). The unit normal is {p — ¢} /.

10.3.2 Ray-Triangle Intersection

There are many algorithms for computing ray-triangle intersections, We will use
the form that uses baryeentric coordinates for the parametric plane containing the
triangle, hecause it requires no long-term storage other than the vertices of the
triangle (Snyder & Barr, 1987},

To intersect a ray with a parametric surface, we set up a system of equations
where the Cartesian coordinates all match;

Te + tzg = fluv);

e +la = ﬂ[!d. 1.‘}1
2o +teg = hiu,).

Here, we have three equations and three unknowns (f, «, and v), 50 we can solve
numerically for the unknowns. If we are lucky, we can solve for them analytically.,
In the case where the parametric surface is a parametric plane, the parametric
equation can be written in vector form as discussed in Section 2.11.2. If the
vertices of the triangle are a, b and ¢, then the intersection will occur when

e+id=a+ Fb-a)+~(c—a) {10.3)

The hitpoint p will be at e + fd as shown in Figure 10.5. Again, from Sec-
tion 2.11.2. we know the hitpoint is in the triangle if and only if @ > 0, v = (L

10.3. Ray-Object Intersection 207

and 7 + v < 1. Otherwise, it hits the plane outside the triangle. If there are
no solutions, either the triangle is degenerate or the ray is parallel 1o the plane
containing the triangle.
To salve for ¢, 4, and = in Equation 10.3. we expand it from its vector form

into the three equations for the three coordinates:

s +fT|.I' =Ta +.lllj[-'r|’.l _-Tvrl} am Tf;rﬂ = Tu,}!

te + tyd = Yo + Mo — Ya) + (e — ¥

Zetigg =z, + 05 — 23) 92 —2a)-

This can be rewritten as a standard linear equation;

Ey—@p Xp—ix. oyl |8 Ty~
o= W6 WVa—Yc Nd T = |lMa—Ue
Ty —2p Eg—ig 23] |1 £y — Zg

The fastest classic method to solve this 3 = 3 linear system is Cramer's rufe. This
gives us the solutions

To=&e Tg—Te Ta
Yo —He Ha—He Hd

; o —Zp Tg— & A
=

|Al

Ty =Ty L= B
Ma— U Ya— e Id

Iiu — & fa T Fe &

Tg—Xp Tpg—Tpg Tg—Tg
W — s o — Ve Wa — He
<n T Sh g —2y Tg — Ze

e
Al

where the matrix A is

To—Th Ta—=Tp T4
A= o= Ya—U Wd
Zp — Zly T — &g =

and | A | denotes the determinant of A. The 3 » 3 determinants have common sub-

terms that can be exploited. Looking at the linear systems with dummy variables

a d g| |3 4
b e Wl |7l =1k
¢ f F] |t {

]

208 10. Ray Tracing

Cramer’s rule gives us

= Jlei = hf) + k(gf — di) + l{dh — eg)
' M

(ak — 7b) + h(je — al) + g(bl — ke)
M -

4

flak— jb) +eljec—al) + dibl — ke)

f=— =

where
M =alei — hf) +blgf — di) + eldh — eg).
We can reduce the number of operations by reusing numbers such as
“ef-minus-hf
The algorithm for the ray-triangle intersection for which we need the linear so-
lution can have some conditions for early termination. Thus, the function should
look something like:
boolean raytri (ray r, vector3 a, vector3 b, vector3 ¢, interval [ty, 1])
compute
if (# < fa) or (f = ¢,) then
return false
compute
if{v<0)or(y > 1) then
return false
compute
if (< 0)or(3>1—7)then
return false
return true

10.3.3 Ray-Polygon Intersection

Given a polygon with m vertices py through p,,, and surface normal n, we first
compute the intersection points between the ray e + td and the plane containing
the polygon with implicit equation

(p—py) - n=0
We do this by setting p = e + td and solving for f to get
s (pi—e}-n

d-n

10.4. A Ray-Tracing Program 209

This allows us to compute p. If p is inside the polygon, then the ray hits it, and
otherwise it does not.

We can answer the guestion of whether p is inside the polygon by projecting
the point and polygon vertices to the ry plane and answering it there. The easiest
way 10 do this 15 to send any 2D ray out from p and to count the number of
intersections between that ray and the boundary of the polygon (Sutherland et al.,
1974, Glassner, 1989), If the number of intersections is odd, then the point is
inside the polygon, and otherwise it is not. This is true, because a ray that goes
in must go out, thus creating a pair of intersections. Only a ray that starts inside
will not create such a pair. To make computation simple, the 2D ray may as well

propagate along the r-axis:
T Ty 1
= + & ‘
o=+l

It is straightforward to compute the intersection of that ray with the edges such as
(w1, . w2, 002) for s € (0, o).

A problem arises, however, for polygons whose projection into the xy plane
is a line. To get around this, we can choose among the ry, yz. or zx planes for
whichever is best. If we implement our poinis to allow an indexing operation,
e.g., p(0) = i, then this can be accomplished as follows:

if (abs{z,) = abs{x,)} and (abs(z,) > abs(y,) then

index0 =10
index! = |
else if (abs(y,,) = abs (x,)] then
indexi=0
index] =2
else
index0 = 1
indexl =2

Now, all computations can use p(index()} rather than &, and so on.

10.4 A Ray-Tracing Program

We now know how to generate a viewing ray for a given pixel and how to find
the intersection with one object. This can be easily extended to a program that
produces images similar to the z-buffer or BSP-tree codes of earlier chapters:

210 10. Ray Tracing

for each pixel do
compute viewing ray
if (ray hits an object with ¢ € [0, oc)) then
Compute n
Evaluate lighting equation and set pixel to that color
else
set pixel color to background color

Here the statement “if ray hits an object..”" can be implemented as a function that
tests for hits in the interval ¢ € [fg. #,]:

hit = false
for each ohject o do
if (object is hit at ray parameter t and t £ [ty ¢;]) then
hit = true
hitohject = o
1 =1
return hit

In an actual implementation, you will need to somehow return either a reference
to the object that is hit or at least its normal vector and material properties, This
is ofien done by passing a recordfstructure with such information. In an object-
oriented implementation, it 1s a good idea to have a class called something like
surface with derived classes wriangle, sphere, surface-list, etc. Anything that a
ray can intersect would be under that class. The ray tracing program would then
have one reference 1o a “surface” for the whole model, and new types of objects
and efficiency structures can be added transparently.

10.4.1 Object-Oriented Design for a Ray-Tracing Program

As mentioned earlier, the key class hierarchy in a ray tracer are the geometric
objects that make up the model. These should be subclasses of some geometric
object class, and they should support a it function (Kirk & Arvo, 1988). To
avoid confusion from use of the word “object,” surface is the class name often
vsed. With such a class, you can create a ray tracer that has a general interface
that assumes little about modeling primitives and debug it using only spheres. An
important point is that anything that can be “hit” by a ray should be part of this
class hierarchy, e.g., even a collection of surfaces should be considered a subclass
of the surface class. This includes efficiency structures, such as bounding volume
hierarchies; they can be hit by a ray, so they are in the class.

10.5. Shadows 211

For example, the “absiract” or “base” class would specify the hit function as
well as a bounding box function that will prove useful later:

class surface
virtual bool hit{ray e + td, real fq, real ¢, hit-record rec)
virtual box bounding-box/()

Here (tg, 1) is the interval on the ray where hits will be returned, and rec is
a recard that is passed by reference; it contains data such as the f at intersection
when hit returns true. The type box is a 3D *bounding box”, that is two points that
define an axis-aligned box that encloses the surface. For example, for a sphere,
the function would be implemented by:

box sphere::bounding-box|)

vectord min = center - vector3{radivs, radius radius)
vectord max = center + vector3 | radivs, radius,radins)
return box | min., max)

Another class that is useful is material. This allows you to abstract the material
behavior and later add materials transparently. A simple way to link objects and
materials is to add a pointer 1o a material in the surface class. although more
programmable behavior might be desirable. A big question is what to do with
lextures; are they part of the material class or do they live outside of the material
class? This will be discussed more in Chapter 11.

10.5 Shadows

Once you have a basic ray tracing program, shadows can be added very easily.
Recall from Chapter @ that light comes from some direction L 1f we imagine
ourselves at a point p on a surface being shaded, the point is in shadow if we
“look™ in direction | and see an object. If there are no objects, then the light is not
blocked.

This is shown in Figure 10.6, where the ray p -+ {1 does not hit any objects
and 1s thus not in shadow. The point q is in shadow because the ray q -+ {1 does
hit an object. The vector 1 is the same for both points because the light is “far”
away. This assumption will later be relaxed. The rays that determine in or out of
shadow are called shadow rays to distinguish them from viewing rays.

To get the algorithm for shading, we add an if statement to determine whether
the point is in shadow. In a naive implementation, the shadow ray will check
for t £ [0, oc), but because of numerical imprecision, this can result in an inter-

Figure 10.6. The point p
is not In shadow while the
paint q is in shadow.

Figure 10.7.

By testing
in the interval starting at «,
wa avoid numerical impre-
cision causing the ray to hit
the surface p is on.

L

ale
~

Flgure 10.8. When lock-
ing into a perfect mirror, the
viawer looking in direction d
will see whatever the viewer
“below” the surface would
ses in direction r.

212 10. Ray Tracing

section with the surface on which p lies. Instead, the usual adjustment to avoid
that problem is to test for t € [e,00) where ¢ is some small positive constant
(Figure 10.7).

If we implement shadow rays for Phong lighting with Equation 9.9 then we
have:

function raycolor(ray e + td, real f;, real t;)
hit-record rec, srec
if (scene—hit(e +#d, 15, #;. rec)) then
p=-e+rectd
color ¢ = rec.c. 1ec.c,
if (not scene—hit(p + s, ¢, oo, srec)) then
vectord h = normalized{normalized(1} + normalized(—d))
o= ¢+ rec.e, opmax (0, recon - 1) + gyrec.ep(h - recon)™?
return ¢
else
return background-color

Note that the ambient color is added in either case. If there are multiple light
sources, we can send a shadow ray and evaluate the diffuse/phong terms for each
light. The code above assumes that d and 1 are not necessarily unit vectors. This
i5 crucial for d, in particular, if we wish to cleanly add instancing later.

10.6 Specular Reflection

It is straightforward to add specular reflection to a ray-tracing program., The key
observation is shown in Figure 10.8 where a viewer looking from direction e
sees whal is in direction r as seen from the surface. The vector r is found using
a variant of the Phong lighting reflection Equation 9.6. There are sign changes
because the vector d points toward the surface in this case, so,

r=d—2(d-n)n, (10.4)

In the real world, some energy is lost when the light reflects from the surface, and

this loss can be different for different colors. For example, gold reflects yellow
more efficiently than blue, so it shifts the colors of the objects it reflects, This can
be implemented by adding a recursive call in ravealar:

color ¢ = ¢ + eyraycolor(p + sr, €, o)

where ¢, is the specular RGE color. We need to make sure we test for s € [e, o0)

10.7. Refraction 213

for the same reason as we did with shadow rays; we don't want the reflection ray
to hit the object that generates it.

The problem with the recursive call above is that it may never terminate, For
example, if @ ray starts inside a room, it will bounce forever. This can be fixed by
adding a maximum recursion depth. The code will be more efficient if a reflection
ray is generated only if ¢, is not zero (black).

10.7 Refraction

Another type of specular object is a dielectric—a transparent material that refracts
light. Diamonds, glass, water, and air are dielectrics. Dielectrics also filter light;
some glass filters out more red and blue light than green light, so the glass takes
on a green tint. When a ray travels from a medium with refractive index n into
one with a refractive index n;, some of the light is transmitted, and it bends. This
is shown for n, > n in Figure 10.9. Snell’s law tells us that

nsin® = n, sin g.

Computing the sine of an angle between two vectors is usually not as convenient
as computing the cosine which is a simple dot product for the unit vectors such as
we have here. Using the trigonometric identity sin® 8 + cos? # = 1, we can derive
a refraction relationship for cosines:

n? (1 - cos?f)

]

cos®¢p=1-
! (4

T

Mote that if n and n; are reversed, then so are # and ¢ as shown on the right of
Figure 10.9.

Figure 10.9. Snell's Law describes how the angle ¢ depands on the angle & and the
refractive indices of the object and the surrounding medium.

(g

Flgure 10.10. The vectors
nand b form a 2D orthonor-
mal basis that Is parallel o
the transmission vector 1.

214 10. Ray Tracing

To convert sin ¢ and cos ¢ into a 3D vector, we can set up a 2D orthonormal
basis in the plane of nand d.

From Figure 10,10, we can see that n and b form an orthonormal basis for the
plane of refraction. By definition, we can describe t in terms of this basis:

t = singh — cos ¢n.

Since we can describe d in the same basis, and d is known, we can solve for b
d = sinfb — cos fin,
B d+neosd
T sinf

This means that we can solve for t with known variables:

PO (d +ncosf))
N Ty

» n(d—n{d-n}}_nJl_ n?(1—(d-n)?)

1y ni

— 11 C0s

MNote that this equation works regardless of which of n and n, is larger. An im-
mediate question is. “What should you do if the number under the square root is
negative?” In this case, there is no refracted ray and all of the energy is reflected.
This is known as total internal reflection, and it is responsible for much of the
rich appearance of glass objects.

The reflectivity of a dielectric varies with the incident angle according 1o the
Fresnel equations. A nice way to implement something close to the Fresnel equa-
tions is to use the Schlick approximation (Schlick, 1994a),

R(8) = Ry + (1 — Rg) (1 — cos)”,

where iy is the reflectance at normal incidence:

g = 1 G
= (ﬂ-t *+ 1) '
Note that the cos & terms above are always for the angle in air (the larger of the
internal and external angles relative to the normal).

For homogeneous impurities, as is found in typical glass, a light-carrying ray’s
intensity will be attenuated according to Beer's Law. As the ray travels through
the medium it loses intensity according to df = —'1 dr, where dr is distance,
Thus, dI /dz = —CI. We can solve this equation and get the exponential [=
fexp{—C'z) + &', The degree of attenuation is described by the RGB attenuation

10.7. Refraction 215

Figure 10.11. The color of the glass is affected by ftotal internal refiection and Beer's Law.
The amount of light transmitted and reflected s determined by the Fresneal equations. The
complex lighting on the ground plane was computed using particle tracing as described in
Chapter 23, (See also Plata V1.)

constant @, which is the amount of attenuation after one unit of distance. Putting
in boundary conditions, we know that I(0)) = I, and I{1) = al(0). The former
implies I{x} = lpexp(—Cx). The latter implies fya = [y exp(—C), s0 -C =
In{a). Thus, the final formula is

I*:‘.!':' = _“:L'IJ',_— '|n[u]--5|

where I s} is the intensity of the beam at distance s from the interface. In practice,
we reverse-engineer a by eyve, because such data is rarely easy to find. The effect
of Beer's Law can be seen in Figure 10.11, where the glass takes on a green tint.
To add transparent materials to our code, we need a way 1o determine when
aray is going “into™ an object. The simplest way Lo do this is to assume that all
objects are embedded in air with refractive index very close 1o 1.0, and that surface
normals point “out” (toward the air). The code segment for rays and dielecirics
with these assumptions is:
if (p is on a dielectric) then
r=reflectid, n |
it (d-n < 0) then
refract(d, n,n, t)

B D

1. scale

2 &

Figure 10.12, An instance
of & circle with a series of
threa transforms is an al-
lipse,

216 10. Ray Tracing
c=-d-n
by by by =
else
kr = exp(—art)
kg = exp{—a,t)

ky = exp(—ast)
if refract(d, -n,1/n, t) then

c=t'n
else
return k+color(p + tr)

Ry=(n—-1)7*/(n+1)*
R=Ro+(1-Ro)(1~c)°
return (i color(p + tr) + (1 — &) color(p + tt))

The code above assumes that the natural log has been folded into the constants
(tty, 1y, ay). The refract function returns false if there is total internal reflection,
and otherwise it fills in the last argument of the argument list,

10.8 Instancing

An elegant property of ray tracing is that it allows very natural instancing. The
basic idea of instancing is to distort all points on an object by a transformation
matrix before the object is displayed. For example, if we transform the unit circle
(in 2D} by a scale factor (2, 1) in = and y, respectively, then rotate it by 45°, and
move one unit in the a-direction, the result is an ellipse with an eccentricity of 2
and a long axis along the & = —y-direction centered at (0, 1) (Figure 10.12), The
key thing that makes that entity an “instance” is that we store the cirele and the
composite transform matrix. Thus, the explicit construction of the ellipse is left
as a future procedure operation at render time,

The advantage of instancing in ray tracing is that we can choose the space
in which to do intersection. If the base object is composed of a set of points,
one of which is p, then the transformed object is composed of that set of points
transformed by matrix M, where the example point is transformed to Mp. If we
have a ray a + th which we want to intersect with the transformed object, we can
instead intersect an inverse-transformed ray with the untransformed object (Fig-
ure 10.13), There are two potential advantages to computing in the untransformed
space (1.e., the right-hand side of Figure 10.13):

1. the untransformed object may have a simpler intersection routine, e.g.. a
sphere versus an ellipsoid;

10.8. Instancing 217

-

/ ray M'a + rlﬂ"'l':l/ll"'h
j s

M'a points p on circle

raya + th

Figure 10.13. The ray intersection problem in the two spaces are just simple transforms
of sach other. The object is specified as a sphara plus matrix M. The ray is specified in the
transformed (world) space by location a and direction b.

2, many transformed objects can share the same untransformed object thus
reducing storage, e.g., a traffic jam of cars, where individual cars are just
transforms of a few base (untransformed) models.

As discussed in Section 6.2.2, surface normal vectors transform differently.
With this in mind and using the concepts illustrated in Figure 10,13, we can de-
termine the intersection of a ray and an object transformed by matrix M. If we
create an instance class of type surface, we need to create a hir function:

instance::hit(ray a + fb, real 5, real ¢, hit-record rec)
rave =M 'a+tM'b
if (base-object—hit(r’, ty, f1, rec)) then
recn = (M~ ') rec.n
return true
else
return false

An elegant thing about this function is that the parameter rec.t does not need to
be changed, because it is the same in either space. Also note that we need not
compute or store the matrix M.

218 10. Ray Tracing

This brings up a very important point: the ray direction b must not be re-
stricted to a unit-length vector, or none of the infrastructure above works, For this
reason, it is useful not to restrict ray directions to unit vectors,

For the purpose of solid texturing, you may want to record the local coordi-
nates of the hitpoint and return this in the hit-record. This is just ray r’ advanced
by parameter rec.t.

To implement the bounding-box function of class instance, we can just take
the eight corners of the bounding box of the base object and transform all of
them by M. and then take the bounding box of those eight points. That will not
necessarily yield the tightest bounding box, but it is general and straightforward
to implement.

10.9 Sub-Linear Ray-Object Intersection

In the earlier ray-object intersection pseudocode, all objects are looped over,
checking for intersections. For N objects, this is an O[N] linear search and
is thus slow for large values of V. Like most search problems, the ray-object
intersection can be computed in sub-linear fime using “divide and conguer™ tech-
niques, provided we can create an ordered data structure as a preprocess. There
are many technigues to do this.

This section discusses three of these lechniques in detail: bounding volume
hierarchies (Rubin & Whitted, 1980; Whitted, 1980; Goldsmith & Salmon, 1987),
uniform spatial subdivision (Cleary, Wyvill, Birtwistle, & Vatti, 1983; Fujimoto,
Tanaka, & Iwata, 1986; Amanatides & Woo, 1987), and binary space partition-

Figure 10.14. Left: a uniform partitioning of space. Right: adaptive bounding-box hierarchy.
image courtesy David DeMare.

10.9. Sub-Linear Ray-Object Intersection 219

ing (Glassner, 1984; Jansen, 1986; Havran, 2000). An example of the first two
strategies is shown in Figure 10.14.

10.9.1 Bounding Boxes

A key operation in most intersection acceleration schemes is computing the inter-
section of a ray with a bounding box (Figure 10.15). This differs from conven-
tional intersection tests in that we do not need to know where the ray hits the box;,
we only need to know whether it hits the box.

To build an algorithm for ray-box intersection, we begin by considering a 2D
ray whose direction vector has positive = and y components. We can generalize
this to arbitrary 3D rays later. The 2D bounding box is defined by two horizontal
and two vertical lines:

* = Tmin,
I = Tmax.
¥ = Hmin:
¥ = Wmuox-

The points bounded by these lines can be described in interval notation:

(2,4) € [Tmins Tmax] X [Ymin, Ymax]+

As shown in Figure 10.16, the intersection test can be phrased in terms of these
intervals. First, we compute the ray parameter where the ray hits the line r =

Tmin s
Emin — Le

I

bamin =
We then make similar computations for £, .., fymins A0d typay. The ray hits the
box if and only if the intervals [timin, fxmax] 20d [fymin, tymax]| Overlap, ie., their
intersection is non-empty. In pseudocode this algorithm is:
txmin = ':'rmm - xe}fiﬂd
Lymax = r:imax _5ejf:fn’.
bymin = {ymin = ye}."lyd
tymax = (Ymax — Ye)/Ya
if (fxmin > tymax) OF (tymin > fxmax) then
return false
else
return true

Figure 10.15. The ray is
only tested for intersection
with the surfaces if it hits the
bounding box.

220 10. Ray Tracing

e

/I-'iumu i}:rrmn
Hluenin '
e [b benaie] —- -
te {gmn,;‘,m], - -

e [Lumine femas] O [fymine fymax | s

Figure 10.16. The ray will be inside the interval x £ [Xmin, %max] for some interval in s
paramater space £ [bmin, femax|. A similar interval exists for the yinterval. The ray intersects
the box if it is In both the x interval and y interval at the same time, | 2., the intersection of the
two one-dimenslonal intervals is not empty.

The if statement may seem non-obvious. To see the logic of it, note that there is
no overlap if the first interval is either entirely to the right or entirely to the left of
the second interval.

The first thing we must address is the case when xy or 3 is negative, If x4 is
negative, then the ray will hit &, before it hits @m:,. Thus the code for computing
temin and tyymay expands to:

if (x4 = 0) then
Lxmin = Emmhn. — Wn}.‘fzd
Lymay = {?qu = Ig:i,r’li-'d'
else
tamin = (Tmax — Te)/Za
Frpux = {Wmm += -'3.;”-'!-'.1{

A similar code expansion must be made for the y cases. A major concern is that
horizontal and vertical rays have a zero value for yy and x4, respectively. This
will cause divide by zero which may be a problem. However, before addressing
this directly, we check whether IEEE floating point computation handles these

- A

10.9. Sub-Linear Ray-Object Intersection 221

cases gracefully for us. Recall from Section 1.6 the rules for divide by zero: for
any positive real number a,

+a/0 = +oc;

—a /0= —oa.
Consider the case of a vertical ray where z; = 0 and yy > 0. We can then
calculate

Tinin — Te |

Lymin = 0 1

Tmax — Te

S ==
There are three possibilities of interest:
l. o =X Tpin (N0 hit);
2. Tmin < Lo < Tgy (hit);
3. Tow = . (0o hit).

For the first case we have

positive number

tamin = 0 H
positive number
bxnax = T

This yields the interval (tymin, fxmin} = (20, 00). That interval will not overlap
with any interval, so there will be no hit, as desired. For the second case, we have

negative number

tamin = =

positive number
0 :

fr:mu —

This yields the interval {fymin, tamin) = (—20.2¢) which will overlap with all
intervals and thus will vield a hit as desired. The third case results in the interval
{— oo, —oo) which yields no hit, as desired, Because these cases work as desired,
we need no special checks for them. As is often the case, IEEE floating point
conventions are our ally. However, there is still a problem with this approach.

bounding box
V= Ymax

d

r&/ ¥=Ymn

e K=Kin Kooy

Figure 10.17. A 2D ray e
+ td is tested against a 2D
bounding box,

bounding box
=

EPHHHH*

Figure 10.18. The bound-
ing boxes can be nested by
creating boxes around sub-
sets of the model.

222 10. Ray Tracing

Consider the code segment:

if (z4 = 0) then
bt = (Cmin — Ze) fTa
b = (Zmax — e} /T
else
taln = {-fmnu —Te)[Xa
troax = (Tmin — Tc}.’li’d

This code breaks down when &y = —(). This can be overcome by testing on the
reciprocal of xy (A, Williams, Barrus, Morley, & Shirley, 2005);

n=1/zq
if (a > 0) then
tmin = U{Irﬂn = 11-';:'
bay = 8 Empe — e)
else
tmin = a(Tmay — Te)
tmax = O Lmin — Te)

10.9.2 Hierarchical Bounding Boxes

The basic idea of hierarchical bounding boxes can be seen by the common tactic
of placing an axis-aligned 3D bounding box around all the objects as shown in
Figure 10.17. Rays that hit the bounding box will actually be more expensive
to compute than in a brute force search, because testing for intersection with the
box is not free. However, rays that miss the box are cheaper than the brute force
search. Such bounding boxes can be made hierarchical by partitioning the set of
objects in a box and placing a box around each partition as shown in Figure 10.18.
The data structure for the hierarchy shown in Figure 10.19 might be a tree with
the large bounding box at the root and the two smaller bounding boxes as left and
right subtrees. These would in rn each point to a list of three triangles. The
intersection of a ray with this particular hard-coded tree would be:
if (ray hits root box) then
if (ray hits left subtree box) then
check three triangles for intersection
if (ray intersects right subtree box) then
check other three triangles for intersection
if (an intersections returned from each subtree) then
return the closest of the two hits

rF

10.9. Sub-Linear Ray-Object Intersection 223

else if (a intersection is returned from exactly one subtree) then
return that intersection
else
return false
else
return false

Some observations related to this algorithm are that there is no geometric ordering
between the two subirees, and there is no reason a ray might not hit both subtrees.
Indeed, there is no reason that the two subtrees might not overlap.

A key point of such data hierarchies is that a box is guaranieed o bound all
objects that are below it in the hierarchy, but they are not guaranteed to contain
all objects that overlap it spatially, as shown in Figure 10.19. This makes this
geometric search somewhat more complicated than a traditional binary search on
strictly ordered one-dimensional data. The reader may note that several possible
optimizations present themselves. We defer optimizations until we have a full
hierarchical algorithm.

If we restrict the tree to be binary and require that each node in the tree have a
bounding box, then this traversal code extends naturally. Further, assume that all
nodes are either leaves in the tree and contain a primitive, or that they contain one
or two sublrees.

The bvh-node class should be of type surface, so it should implement
surfce::hit. The data it contains should be simple:

class bvh-node subclass of surface

virtual bool hit(ray e + td, real #;, real £1, hit-record rec)
virtual box bounding-box()

surface-pointer left

surface-pointer right

biox bbox

The traversal code can then be called recursively in an object-oriented style:

bool bvh-node::hit{ray a + tb, real £y, real {;, hit-record rec)
if (bbox.hithox(a + th, #y, £1)) then
hit-record Irec, rrec
left-hit = (left # NULL) and (left — hit(a + th, tq, 1y, Irec))
right-hit = (right ¥ NULL) and (right — hit{a + th, t;, t;, rec))
if (left-hit and right-hit) then
if {lrec.t < rrec.t) then
rec = lrec

Figure 10.19. The
grey box s a tree node
that points 1o the three grey
spheres, and the thick black
box paints to the thrae black
spheres. Note that not all
spheres enclosed by the
box are guaranteed to be
pointed to by the corra-
sponding tree node,

224 10. Ray Tracing

else
rec = rrec

return true

else if (lefi-hit) then
rec = lrec
return trug

else if {right-hit) then
rec = rrec
return true

else
return false

else
return false

Mote that because leff and right point to surfaces rather than bvh-nodes specifi-
cally, we can let the virfual functions take care of distinguishing between internal
and leaf nodes; the appropriate hit function will be called. Note, that if the tree
is built properly, we can eliminate the check for left being NULL. If we want to
eliminate the check for right being NULL, we can replace NULL right pointers
with a redundant pointer to left. This will end up checking left twice, but will
eliminate the check throughout the tree. Whether that is worth it will depend on
the details of tree construction,

There are many ways to build a tree for a bounding volume hierarchy. It is
convenient to make the tree binary, roughly balanced, and to have the boxes of
sibling subtrees not overlap too much. A heuristic to accomplish this is to sort
the surfaces along an axis before dividing them into two sublists. If the axes are
defined by an integer with x = (), y = 1, and =z = 2 we have:

bvh-node::bvh-node(object-array A, int AXIS)
N = A length
if (N= 1) then

left = A[0]

right = NULL

bbox = bounding-box(A[0])
else if (N= 2) then

left-node = AJ0]

right-node = A[1]

bbox = combine(bounding-box{A|0]), bounding-box(A[1]))
else

sort A by the object center along AXIS

10.9. Sub-Linear Ray-Object Intersection 225

left= new bvh-node{ A[0.N/2 — 1], (AXIS +1) mod 3)
right = new bvh-node{ A[N/2..N—1], (AXIS +1) mod 3)
bbox = combine(left-node — bbox, right-node — bbox)

The guality of the tree can be improved by carefully choosing AXIS each time.
One way to do this is to choose the axis such that the sum of the volumes of the
bounding boxes of the two subtrees is minimized. This change compared to ro-
tating through the axes will make little difference for scenes composed of isotopi-
cally distributed small objects, but it may help significantly in less well-behaved
scenes. This code can also be made more efficient by doing just a partition rather
than a full sort,

Another, and probably better, way to build the tree is to have the subtrees
contain about the same amount of space rather than the same number of objects.
To do this we partition the list based on space:

bvh-node::bvh-node[object-array A, int AXIS)
N = Allength
if (N = 1) then
left = Al()]
right = NULL
bbox = bounding-box(A[(])
else if (N = 2) then
left = A[0]
right = A[1]
bbox = combine(bounding-box(A[0]), bounding-box(A[1]))
else
find the midpoint m of the bounding box of A along AXIS
partition A into lists with lengths k and [N-k) surrounding v
left = new node(A[0. k], (AXIS +1) mod 3)
right = new node{A[k+1.N—1], (AXIS +1) mod 3)
bbox = combine{left-node — bbox, right-node — bbox)

Although this results in an unbalanced tree, it allows for easy traversal of empty
space and is cheaper to build because partinoning is cheaper than sorting.

10.9.3 Uniform Spatial Subdivision
Another strategy to reduce intersection tests is to divide space. This is funda-

mentally different from dividing objects as was done with hierarchical bounding
volumes:

226 10. Ray Tracing

'\-.?\\
|

NN

Figure 10.20. In uniform spatial subdivision, the ray is tracked forward through cells until
an object in one of those cells is hit. In this example, cnly objects in the shaded cells are
checked.

In hierarchical bounding volumes, each object belongs to one of two sibling
nodes, whereas a point in space may be inside both sibling nodes.

e In spatial subdivision, each point in space belongs to exactly one node,
whereas objects may belong to many nodes.

The scene is partitioned info axis-aligned boxes. These boxes are all the same
size, although they are not necessarily cubes. The ray traverses these boxes as
shown in Figure 10.20. When an object is hit, the traversal ends.

[TTTT] |

Figure 10.21. Although the pattern of cell hits seems irmegular (left), the hits on sets of
parallel planes are very aven.

F =

10.9. Sub-Linear Ray-Object Intersection 227

The grid itself should be a subclass of surface and should be implemented as
a 3D array of pointers w surface. For empty cells these pointers are NULL. For
cells with one object, the pointer peints to that object. For cells with more than
one object, the pointer can point to a list, another grid, or another data structure,
such as a bounding volume hierarchy,

This traversal is done in an incremental fashion. The regularity comes from
the way that a ray hits each set of parallel planes, as shown in Figure 10.21. To
see how this traversal works, first consider the 2D case where the ray direction
has positive = and y components and starts outside the grid. Assume the gnd is
bounded by points (i, Ymin) a0d (Tias; Yinax). The grid has n, by ny, cells.

Our first order of business is to find the index (i.j) of the first cell hit by
the ray e + td. Then, we need to traverse the cells in an appropriate order. The
key parts to this algorithm are finding the initial cell (1, j) and deciding whether
to increment i or j (Figure 10.22). Note that when we check for an intersection
with objects in a cell, we restrict the range of # to be within the cell (Figure 10.23),
Most implementations make the 3D array of type “pointer to surface.” To improve
the locality of the traversal, the array can be tiled as discussed in Section 13.4,

10.9.4 Binary-Space Partitioning

We can also partition space in a hierarchical data structure such as a binary-space-
partitioning tree (BSP wee). This is similar to the BSP tree used for a painter’s
algorithm in Chapter 8, but it usually uses axis-aligned cutting planes for easier
ray intersection. A node in this structure might contain a single cutting plane and
a left and right subtree, These subtrees would contain all objects on either side of
the cutting plane. Ohjects that pass through the plane would be in each subtree,
If we assume the cutting plane is parallel to the yz plane at + = D, then the node
class is:

class bsp-node subclass of surface

virtual bool hit(ray e + td, real £y, real ¢, hit-record rec)

virtual box bounding-box()

surface-pointer left

surface-pointer right

real [
We generalize this 1o i and = cutting planes later. The intersection code can then
be called recursively in an object-oriented style. The code considers the four
cases shown in Figure 10.24. For our purposes, the origin of these rays is a point
al parameter &y:

p=a+tb.

et

Lyt

ray AT
oall ()

Figure 10.22. To decide
whether we advance right
of upwards, we keep track
of the intersections with the
next vertical and horizontal
boundary of the call,

ray A
col [{)

Figure 10.23. Only hits
within the cell should be re-
ported, Otherwise the case
above would cause us fo re-
port hitting object b rather
than chject 4.

-""""--. i
case 1 case 3
il
cage 2 case 4
¥=0D
Figure 10.24. The four

cases of how a ray relates
to the BSP cutting plane
x=D0,

228 10. Ray Tracing

The four cases are:

1. The ray only interacts with the left subtree, and we need not test it for
intersection with the cutting plane. It occurs for @y, < D and &y < (.

2. The ray 1s tested against the left subtree, and if there are no hits, it is then
tested against the right subtree. We need to find the ray parameter at v = I3,
50 we can make sure we only test for intersections within the subtree. This
case oceurs for oy, < Dand o > 0.

3. This case is analogous to case | and occurs for xy, > [and &y > 0.
4. This case is analogous to case 2 and occurs for x, > D and x, < 0.
The resulting traversal code handling these cases in order is:

bool bsp-node::hit(ray a + ¢b, real £y, real £, hit-record rec)
Iy = Ty + fpip
if (x, < D) then
if (xy < 0) then
return (left # NULL) and (lefi—hit{a + tb, ty, t;, rec))
t=(D-zx, ”‘zb
if (t > t,) then
return (left # NULL) and (lefi—hit{a + tb, ty, ¢, rec))
if (left # NULL) and (left—hit{a + tb, ty, t, rec)) then
return true
return (right # NULL) and (right—hit(a + tb, t, t,, rec))
else
analogous code for cases 3 and 4

This is very clean code. However, to get it started, we need to hit some root object
that includes a bounding box so we can initialize the traversal, {g and ¢, An issue
we have to address is that the cutting plane may be along any axis. We can add
an integer index axis to the bsp-node class. If we allow an indexing operator
for points, this will result in some simple modifications to the code above, for
example,

Tp = Eq + oy
would become

Uy = ﬂ.{ﬂ)ﬁiﬁ] =+ fuﬁi&x-iS]

which will result in some additional array indexing, but will not generate more
branches,

10.10. Constructive Solid Geometry 229

While the processing of a single bsp-node is faster than processing a bvh-node,
the fact that a single surface may exist in more than one subtree means there are
more nodes and, potentially, a higher memory use. How “well” the trees are built
determines which is faster. Building the tree is similar to building the BVH tree.
We can pick axes to split in a cycle, and we can split in half each time, or we can
try to be more sophisticated in how we divide.

10.10 Constructive Solid Geometry

Ome nice thing about ray tracing is that any geometric primitive whose intersection
with a 3D line can be computed can be seamlessly added to a ray tracer. It turns
out to also be straightforward to add constructive solid geometry (C3G) to a ray
tracer (Roth, 1982). The basic idea of CSG is to use set operations to combine
solid shapes. These basic operations are shown in Figure 10.25. The operations
can be viewed as ser operations. For example, we can consider O the set of all
points in the circle, and S the set of all points in the square. The intersection
operation €7 M 5 is the set of all points that are both members of C' and 5. The
other operations are analogous.

Although one can do CSG directly on the model, if all that is desired is an
image, we do not need to explicitly change the model. Instead, we perform the set
operations directly on the rays as they interact with a model, To make this natural,
we find all the intersections of a ray with a model rather than just the closest. For
example, a ray a + th might hit a sphere at t = 1 and ¢ = 2. In the context of
CSG, we think of this as the ray being inside the sphere for t € [1,2]. We can
compute these “inside intervals” for all of the surfaces and do set operations on
those intervals (recall Section 2.1.2). This is illustrated in Figure 10.26, where
the hit intervals are processed to indicate that there are two intervals inside the
difference object. The first hit for ¢+ > 0 is what the ray actually intersects.

In practice, the CSG intersection routine must maintain a list of intervals,
When the first hitpoint is determined, the material property and surface normal is
that associated with the hitpoint. In addition, you must pay atiention to precision
issues because there is nothing to prevent the user from taking two objects that
abut and taking an intersection. This can be made robust by eliminating any
interval whose thickness is below a certain tolerance,

10.11 Distribution Ray Tracing

For some applications, ray-traced images are just too “clean.” This effect can be
mitigated using distribution ray tracing (Cook et al., 1984) . The conventionally

Cwus
{emio)

C_

) et
J

)

C-5
(differencea)

Cns
(intersaction)

Figure 10.25. Tha ba-
sic C5G operations on a 2D
circle and square.

Figure 10.26. Intervals
are processed to indicate
how the ray hits the com-

posite object.

Figure 10.27. Sintesn
regular samples for a single

pinel,

Figure 10.28. Sixtean ran-
dom samples for a single
pixel.

230 10. Ray Tracing

ray-traced images look clean, because everything is crisp; the shadows are per-
fectly sharp, the reflections have no fuzziness, and everything is in perfect focus,
Sometimes we would like to have the shadows be soft (as they are in real life), the
reflections be fuzzy as with brushed metal, and the image have variable degrees of
focus as in a photograph with a large aperture. While accomplishing these things
from first principles is somewhat involved (as is developed in Chapter 23), we
can get most of the visual impact with some fairly simple changes to the basic ray
tracing algorithm. In addition, the framework gives us a relatively simple way to
antialias (recall Section 3.7) the image.

10.11.1 Antialiasing

Recall that a simple way to antialias an image is to compute the average color
for the area of the pixel rather than the color at the center point. In ray tracing,
our computational primitive is to compute the color at a point on the screen. If
we average many of these points across the pixel, we are approximating the true
average, If the screen coordinates bounding the pixel are [i,i + 1] = [5,7 + 1],
then we can replace the loop:

for each pixel (i,) do
¢ij = ray-color(i + 0.5, j + 0.5)

with code that samples on a regular n = 7 grid of samples within each pixel:

for each pixel (i, j) do
c=0
forp=0ton—1do
forg=0ton —1do
¢ = ¢ + ray-color(i + (p + 0.5)/n, j + (¢ + 0.5)/n)
ci; =¢/n?

This is vsually called regular sampling. The 16 sample locations in a pixel for
n = 4 are shown in Figure 10.27. Note that this produces the same answer as
rendering a traditional ray-traced image with one sample per pixel at nzn by nyn
resolution and then averaging blocks of n by n pixels to get a n, by ny image.

One potential problem with taking samples in a regular pattern within a pixel
is that regular artifacts such as moiré patterns can arise. These artifacts can be
turned into noise by taking samples in a random pattern within each pixel as
shown in Figure 10.28. This is usually called random sampling and involves just
a small change to the code:

F

10.11. Distribution Ray Tracing 231

For each pixel (1,) do
e=0
for p = 1ton do
e = c+ ray-color(i + £, 7 + &)
i = c/n®

Here £ is a call that returns & uniform random number in the range [0, 1). Unfor-
tunately, the noise can be quite objectionable unless many samples are taken. A
compromise is to make a hybrid strategy that randomly perturbs a regular grid:
for each pixel (i, j) do
c=10
forp=~0twn—1do
forg=0ton—1do
e=c+ray-color{i + (p+ &) /n, j+ (g +£)/n)
iy = efn?

That method is usually called jirrering or strarified sampling (Figure 10.29).

10.11.2 Soft Shadows

The reason shadows are hard to handle in standard ray tracing is that lights are
infinitesimal points or directions and are thus either visible or invisible. In real
life, lights have non-zero area and can thus be partially visible, This idea is shown
in 23 in Figure 10.30. The region where the light is entirely invisible is called
the umbra. The partially visible region is called the penumbra. There is not a
commonly used term for the region not in shadow, but it is sometimes called the
anti-umbra,

The key to implementing soft shadows is to somehow account for the Tight
being an area rather than a point. An easy way to do this is to approximate the
light with a distributed set of NV point lights each with one Nth of the intensity
of the base light. This concept is illustrated at the left of Figure 10.31 where nine
lights are used. You can do this in a standard ray tracer, and it is a common trick
to get soft shadows in an off-the-shelf renderer. There are two potential problems
with this technique. First, typically dozens of point lights are needed to achieve
visually smooth results, which slows down the program a great deal. The second
problem is that the shadows have sharp transitions inside the penumbra.

Distribution ray tracing introduces a small change in the shadowing code.
Instead of representing the area light at a discrete number of point sources, we
represent it as an infinite number and choose one at random for each viewing ray.

Figure 10.29. Sixtesn
siratified (jittered) samples
for a single pixel shown with
and without the bins high-
lighted. There is exactly
one random sample taken
withirs @ach bin.

—

intengity on ground plans

Figure 10.30. A
soft shadow has a gradual
transition from the unshad-
owed to shadowed region.
The transition zone is the
“penumbra” dencted by pin
the figure,

Figure 10.32. The geom-
etry of a parallelogram light
specified by a corner point
and two adge vectors.

292 10. Ray Tracing

Figure 10.31. Lett: an araa light can be approximated by some number of paint lights; four
of the nine points are visible to p =o it is in the penumbra. Right: & random point on the lght
is chosen for the shadow ray, and it has some chance of hitting the light or not.

This amounts io choosing & random point on the light for any surface point being
lit as is shown at the right of Figure 10,31,

If the light is a parallelogram specified by a comer point ¢ and two edge
vectors a and b (Figure 10.32), then choosing a random point r is straightforward:

r=c+ £ a+ &b,

where £ and £ are uniform random numbers in the range [0, 1).

We then send a shadow ray to this point as shown at the right in Figure 10.31.
Note that the direction of this ray is not unit length, which may reguire some
maodification to your basic ray tracer depending upon its assumptions.

We would really like to jitter points on the light. However, it can be dangerous
to implement this without some thought. We would not want to always have the
ray in the upper left-hand comer of the pixel generate a shadow ray to the upper
lefi-hand corner of the light. Tnstead we would like to scramble the samples, such
that the pixel samples and the light samples are each themselves jittered, but so
that there is no correlation between pixel samples and light samples. A good way
to accomplish this is to generate two distinct sets of n” jittered samples and pass
samples into the light source routine:

for each pixel (i, ;) do
e=1{(
generate N = n? jittered 2D points and store in array 1 |
generate N = n? jittered 2D points and store in array s |
shuffle the points in array 5[|
forp=0to N — | do
¢ = ¢ + ray-color(i + rlp].x(), 7 + r[pl-¥(), slp])
Cig = E!,er

k.

10.11. Distribution Ray Tracing 233

This shuffle routine eliminates any coherence between arrays v and s. The shadow
routing will just use the 2D random point stored in s[p] rather than calling the |
random number generator. A shuffle routine for an array indexed from 0 to N = 1
is:
fori = N — | downto 1 do
choose random integer j between 0 and i inclusive
swap array elements { and j

10.11.3 Depth of Field

The soft focus effects seen in most photos can be simulated by collecting light at
a non-zero size “lens” rather than at a point. This is called depth of field. The
lems collects light from a cone of directions that has its apex at a distance where
everything is in focus (Figure 10.33). We can place the "window™ we are sampling
on the plane where everything is in focus (rather than at the z = n plane as we did
previously), and the lens at the eye. The distance to the plane where everything is lens

in focus we call the focts plane, and the distance to it is set by the user, just as the focus
distance to the focus plane in a real camera is set by the user or range finder. piane

Figure 10.33. Tha lans
averages over a cone of
directions that hit the pixel
location baing sampled,

Figure 10.34. An example of depth of field. The caustic in the shadow of the wine glass is
computed using particle fracing as described in Chapter 23, (See also Plate Vi)

L. 234 10. Ray Tracing

To be most faithful to a real camera, we should make the lens a disk. However,

. wie will get very similar effects with a square lens (Figure 10.35). S0 we choose
the side-length of the lens and take random samples on it. The origin of the
view rays will be these perturbed positions rather than the eye position. Again, a
shuffling routine is used to prevent correlation with the pixel sample positions. An
example using 23 samples per pixel and a large disk lens is shown in Figure 10.34,

Figure 10.35. To create
depth-of-field effects, the

oS 10.114 GloseyRotecin

Some surfaces, such as brushed metal. are somewhere between an ideal mirror
and a diffuse surface. Some discernible image is visible in the reflection but it
is blurred, We can simulate this by randomly perturbing ideal specular reflection
rays as shown in Figure 10.36.

Only two details need to be worked out: how to choose the vector r', and what
to do when the resulting perturbed ray is below the surface from which the ray is
reflected, The latter detail is usually setiled by returning a zero color when the
— ray is below the surface.

Figure 10.36. The re- To choose ', we again sample a random square. This square is perpendicular

Sscion yay I pertared b to T and has width a which controls the degree of blur. We can set up the square’s

a random vector ', : . 7 B ; ; F
arientation by creating an orthonormal basis with w = r using the techniques in
Section 2.4.6, Then, we create a random point in the 2D square with side length
a centered at the origin. If we have 2D sample points (£, £} € [0, 1]?, then the
analogous point on the desired square is

i

u=—§+fa,
48

¥=—=-+E&a
5 +E€

Because the square over which we will perturb is parallel to both the u and v
vectors, the ray ' is just
r=r + ul+ vv.

Note that ' is not necessarily a unit vector and should be normalized if your code
requires that for ray directions,

10.11.5 Motion Blur

We can add a blurred appearance to objects as shown in Figure 10,37, This is
called motion blur and is the result of the image being formed over a non-zero

10.11. Distribution Ray Tracing 235

Figure 10,37. The bottom right sphere is in motion, and a blurred appearance rasults
Image courtesy Chad Barb.

span of time. In a real camera, the aperture is open for some time interval during
which objects move. We can simulate the open aperture by setting a time variable
ranging from T to T4, For each viewing ray we choose a random tume,

T'=1Tg+ £ —Tg)

We may also need to create some objects o move with time. For example, we
might have a moving sphere whose center travels from ¢ to ¢ during the interval.
Given T, we could compute the actual center and do a ray—intersection with that
sphere, Because each ray is sent at a different time, each will encounter the sphere
at a different position, and the final appearance will be blurred. Note that the
bounding box for the moving sphere should bound its entire path so an efficiency
structure can be built for the whole time interval (Glassner, 1988),

236 10. Ray Tracing

Frequently Asked Questions

» Why is there no perspective matrix in ray tracing?

The perspective matrix in a z-buffer exists so that we can turn the perspective pro-
jection into a parallel projection. This is not needed in ray tracing, because it is
easy to do the perspective projection implicitly by fanning the rays out from the
eye.

» What is the best ray-intersection efficiency structure?

The most popular structures are binary space partitioning trees (BSP trees), uni-
form subdivision grids, and bounding volume hierarchies. There is no clear-cut
answer for which is best, but all are much, much better than brute-force search
in practice. If I were to implement only one, it would be the bounding volume
hierarchy because of its simplicity and robustness.

» Why do people use bounding boxes rather than spheres or ellipsoids?

Sometimes spheres or ellipsoids are better. However, many models have polyg-
onal elements that are tghtly bounded by boxes, but they would be difficult to
tightly bind with an ellipsoid.

= Can ray tracing be made interactive?

For sufficiently small models and images, any modern PC is sufficiently pow-
erful for ray tracing to be interactive. In practice, multiple CPUs with a shared
frame buffer are required for a full-screen implementation. Computer power is in-
creasing much faster than screen resolution, and it is just a matter of time before
conventional PCs can ray trace complex scenes at screen resolution.

s [s ray tracing useful in a hardware graphics program?

Ray tracing is frequently used for picking. When the user clicks the mouse on a
pixel in a 3D graphics program, the program needs to determine which object is
visible within that pixel. Ray tracing is an ideal way to determine that.

10.11. Distribution Ray Tracing 237

Exercises

1. What are the ray parameters of the intersection points between ray (1,1, 1)+
t(—1,—1,—1) and the sphere centered at the origin with radius 17 Note:
this is a good debugging case.

2. What are the barycentric coordinates and ray parameter where the ray
(1,1,1) + t{—1,—1,—1) hits the triangle with vertices (1.0, 0}, (0, 1,0),
and (0,0, 1)? Note: this is a good debugging case.

3. Do a back of the envelope computation of the approximate time complexity
of ray tracing on “nice” (non-adversarial) models. Split your analysis into
the cases of preprocessing and computing the image, so that you can predict
the behavior of ray tracing multiple frames for a static model.

11
Texture Mapping

The shading models presented in Chapter 9 assume that a diffuse surface has uni-
form reflectance ¢, This is fine for surfaces such as blank paper or painted walls,
but it is inefficient for objects such as a printed sheet of paper. Such objects have
an appedrance whose complexity arises from variation in reflectance properties.
While we could use such small triangles that the variation is captured by varying
the reflectance properties of the triangles, this would be inefficient.

The common technique to handle variations of reflectance is to store the re-
flectance as a function or a a pixel-based image and “map” it onto a surface (Cat-
mull, 1975). The function or image is called a rexture map, and the process of
controlling reflectance properties is called rexture mapping. This is not hard to
implement once you undersiand the coordinate systems involved. Texture map-
ping can be classified by several different properties;

1. the dimensionality of the texture function,

2. the correspondences defined between points on the surface and points in the
texture function, and

3. whether the texture function is primarily procedural or primarily a table
look-up.

These items are usually closely related, so we will somewhat arbitrarily classify
textures by their dimension. We first cover 3D textures, often called solid tex-
tures or vedume textures. We will then cover 2D textures, sometimes called image

239

240 11. Texture Mapping

textures. When graphics programmers talk about textures without specifying di-
mension, they usually mean 2D textures. However, we begin with 3D textures
because, in many ways, they are easier to understand and implement. At the end
of the chapter we discuss bump mapping and displacement mapping which use
textures to change surface normals and position, respectively. Although those
methods modify properties other than reflectance, the images/functions they use
are still called textured. This is consistent with common usage where any image
used 1o modify object appearance is called a texture,

11.1 3D Texture Mapping

In previous chapters we used ¢ as the diffuse reflectance at a point on an object.
For an object that does not have a solid color, we can replace this with a function
¢ (p) which maps 3D points to RGB colors (Peachey, 1985, Perlin, 1985). This
function might just return the reflectance of the object that contains p. But for
ohjects with rexmure, we should expect c.(p) to vary as p moves across a surface.
One way to do this is to create a 3D texture that defines an RGB value at every
point in 3D space. We will only call it for points p on the surface, but it is usoally
easier to define it for all 3D points than a potentially strange 2D subset of points
that are on an arbitrary surface. Such a strategy is clearly suitable for surfaces that
are “carved” from a solid medium, such as a marble sculpture,

MNote that in a ray-tracing program, we have immediate access (o the point p
seen through a pixel. However, for a z-buffer or BSP-tree program, we only know
the peint after projection into device coordinates. We will show how to resolve
this problem in Section 11.4.1.

11.1.1 3D Stripe Textures

There are a surprising number of ways to make a striped texture. Let's assume we
have two colors ¢ and ¢y that we wanlt (o use (o make the stripe color. We need
some oscillating function to switch between the two colors. An easy one is a sine;

RGB stripe(point p)
if (sin(z;,) = () then
return o
else
return o

11.1. 3D Texture Mapping 241

We can also make the stripe’s width w controllable:

RGB stripe(point p, real w)
if (sin{mz,/w) > 0) then
return oy
else
return ¢

If we want to interpolate smoothly between the stripe colors, we can use a param-
eter ¢ to vary the color linearly:

RGB stripe(point p, real w)
t = (1+ sin(mp, /w))/2
return (1 — ey + tey

These three possibilities are shown in Figure 11.1.

11.1.2 Texture Arrays

Another way we can specify texture in space is to store a 3D array of color values
and to associate a spatial position to each of these values. We first discuss this
for 2D arrays in 2D space, Such textures can be applied in 3D by vsing two of
the dimensions, e.g. « and y, to determine what texture values are used. We then
extend those 2D results to 3D,

We will assume the two dimensions to be mapped are called « and . We also
assume we have an n, by r, image that we use as the texture. Somehow we need
every (u,v) to have an associated color found from the image. A fairly standard
way 1o make texturing work for (u, v) is to first remove the integer portion of
(1,) so that it lies in the unit square. This has the effect of “tiling” the entire
uw plane with copies of the now-square texture (Figure 11.2). We then use one of
three interpolation strategies to compute the image color for that coordinate. The
simplest strategy is to treat each image pixel as a constant colored rectangular tile
(Figure 11.3 (a). To compute the colors, we apply e(u, v) = ¢, where ¢(u, v) is
the texture color at (u, v) and c; is the pixel color for pixel indices:

i=|un:,

i = lomy;

(11.1)

|z is the floor of =, (n,,n,) is the size of the image being textured, and the
indices start at (i, j) = (0, (). This method for a simple image is shown in Fig-
ure 11.3 (b).

Figure 11.1. Yarious
stripe textures result from
drawing a regular array of
xy points while keeping z
constant,

242 11, Texture Mapping

Figure 11.2. The tiling of an image onte the (u.v) plane, Note that the input image IS
rectangular, and thal this rectangie is mapped 1o a unit square on the (uv) plane.

For a smoother texture. a bilinear interpolation can be used as shown in Fig-
ure | 1.3 (¢). Here we use the formula

clw,v) = (1=)1 —v')es;
+u'(1 = v')epis0;
+1{1=u"Y'e

i[J+1)

LI
+ WU Crip1iG+1)
where
I [i

W =gt — Mgl

0= qagtt — gt
The discontinuities in the derivative in intensity can cause visible mach bands, so
hermite smoothing can be vsed

i

f \ N f '

el v) =1 —u")1 =1 5t
L (s

+u (L= 7 Jepig
" e

(1= w0 g

o
+ Ci ik 110

11.1. 3D Texture Mapping 243

(B} lc} {d)

(a)

Figure 11.3. (a) The image on the left has nine plxels that are all either black or white. The
three interpolation siralegies are (b) nearest-neighbor, (c) bilinear, and (d) harmite.

where
u” = 3(u? —2(u’)?,
o' = 3(v")? = 2(0")",
which results in Figure 11.3 {(d).
In 3D, we have a 3D array of values. All of the ideas from 2D extend naturally.
As an example, let’s assume that we will do trilinear interpolation between val-
ues. First, we compute the texture coordinates (u’, v, w') and the lower indices
(7,7, k) of the array element to be interpolated:
elu, v, w) = (1 —w')1 — o')1 — w'hein
+ (1= v')(1 = ')egenn
+- {1 — ?J'}!'r{i — rf"}n"“_j.l. 1}k
+ (1 = u')(1 = o)l
= W ek) (11.2)
+ut (1 — w' e e
+u'(1 - r'J]'H'rffr:+1:-j|k+l:-
+ 11— u"'l'r"u"::,-[:,., Uy{k413
-+ HFI.‘FH"IE“.J TEEN LI TRAT
where
o=t — |Tipn],
v gl — | Ny, (11.3)

w' = ngw — [nawl.

11.1.3 Solid Noise

Although regular texiures such as stripes are often useful, we would like to be able
to make “mottled” textures such as we see on birds' eggs. This is usually done

Figure 11.4. Absolute
valua of solid noise, and
noisa for scaled x and v val-
uas.

244 11, Texture Mapping

by using a sort of “solid noise,” usually called Perlin poise afier its inventor, who
received a technical Academy Award for its impact in the film industry (Perlin,
1985),

Getting a noisy appearance by calling a random number for every point would
not be appropriate, because it would just be like “white noise™ in TV static. We
would like to make it smoother without losing the random guality. One possibility
is to blur white noise, but there is no practical implementation of this. Another
possibility is to make a large lattice with a random number at every lattice point,
and then interpolate these random points for new points between lattice nodes;
this is just a 3D texture array as described in the last section with random numbers
in the array, This technique makes the lattice too obvious, Perlin used a variety
of tricks to improve this basic lattice technique so the lattice was not so obvious.
This results in a rather barogque-looking set of steps, but essentially there are just
three changes from linearly interpolating a 3D array of random values, The first
change is to use Hermite interpolation to avoid mach bands, just as can be done
with regular textures. The second change is the use of random vectors rather than
values, with a dot product to derive a random number; this makes the underlying
grid structure less visually obvious by moving the local minima and maxima off
the grid vertices. The third change is to use a4 1D array and hashing to create a
virtual 3D array of random vectors. This adds computation 1o lower memory use.
Here is his basic method:

Pl

nix, . 2

.." M'_

L]
L Qiaale —d, 40— J, 2 — k),

where (z. y. z} are the Cartesian coordinates of x, and
e, vow) = wluew(ojo{w) (e - (wvow)),
and w(t) is the cubic weighting function:

ey = 2t -3l +1 iflt <1,
g | otherwise,

The final piece is that T, ;. is a random unit vector for the lattice point (2.4, z) =
(1.7, k). Since we want any potential 17k, we use a pseudorandom table:

ije = G (i + (5 + (k) ,

where G is a precomputed array of n random unit vectors, and ¢li) =
Pli mod n| where P is an array of length n containing a permutation of the

1. 3D Texture Mapping 245

integers O through n — L. In practice, Perlin reports n = 256 works well. To
choose a random unit vector (v, @y, v) first set

v =28 —1,
IJH'__EEI =1
v, = 26" -1,

where £ £'.£" are canonical random numbers (uniform in the interval [0, 1))
Then, if (v2 +vj +v?) < 1, make the vector a unit vector. Otherwise keep setting
it randomly until its length is less than one, and then make it a unit vector. This
is an example of a refection method, which will be discussed more in Chapter 14,
Essentially, the “less than™ test gets a random point in the unit sphere, and the
vector for the origin to that point is uniformly random. That would not be true of
random points in the cube, so we “get nd” of the comers with the test.

Because solid noise can be positive or negative, it must be transformed before
being converted to a color. The absolute value of noise over a ten by 1en square is
shown in Figure 11.4, along with stretched versions. There versions are stretched
by scaling the points input to the noise function.

The dark curves are where the original noise function changed from positive
to negative. Since noise varies from —1 to |, a smoother image can be achieved
by using (noise + 1)/2 for color. However, since noise values close to 1 or —1 are
rare, this will be a fairly smooth image. Larger scaling can increase the contrast
(Figure 11.5).

11.1.4 Turbulence

Many natural textures contain a variety of feature sizes in the same texture. Perlin
uses a pseudotfractal “turbulence™ function:

m(x) =Y "—%"—”

This effectively repeatedly adds scaled copies of the noise function on top of itself
as shown in Figure 11.6.
The trbulence can be used to distort the stripe function:

RGB turbstripe(point p, double w)
double t = (1 + sin(k; 2, + turbulence(kap))/w)/2
return ¢+ 50 + (1 —] = sl

Various values for by and ko were used to generate Figure 11.7.

> 5 %
e

Figure 11.5. Using
O&{noise+1) (top) and
0.8(noise+1) (bottom) for
intensity.

248 11. Texture Mapping

Figure 11.6. Turbulence function with {from top left to bottom rght) one through eight terms
in the summation.

i
i

Figure 11.7. Varicus turbulent stripe texiures with difterent ky | k. The top row has only the
first tarm of the turbulence serias,

11.2 2D Texture Mapping

For 2D texture mapping, we use a 2D coordinate, often called wv, which is used
to create a reflectance R{w, v}, The key is to take an image and associate a (u, o)
coordinate sysiem on it so that it can, in turn, be associated with points on a 3D
surface. For example. if the latitudes and longitudes on the world map are associ-
ated with a polar coordinate system on the sphere, we get a globe (Figure 11.8),
It is crucial that the coordinates on the image and the object match in “just the
right way.” As a convention, the coordinate system on the image is set to be the
unit square (u,v) € [0, 11%. For {u, v} outside of this square, only the fractional
parts of the coordinates are used resulting in a tiling of the plane (Figure 11.2),

11.2. 2D Texture Mapping 247

Figure 11.8. A Miller cylindrical projection map world map and its placemeant on the sphere,
The distortions in the texture map (i.e., Greanland being so large) exactly corespond 1o the
shrinking that occurs when the map is applied 1o the sphera.

Note that the image has a different number of pixels horizontally and vertically,
50 the image pixels huve a non-uniform aspect ratio in (u, ©) space.

To map this (u, v} € [0, 1]* image onto a sphere, we first compute the polar
coordinates, Recall the spherical coordinate system described by Equation 2.24.
For a sphere of radius B with center (e.., 0y, o2, the parametric equation of the

sphere is

r=ur.+ Reososind,
i = Yy + Asindsinf,
=g + RHeosf,

]
]

We can find {#, ¢):

! = arcieos S)
()

¢ = arctan2(y — Y. — sl

where arctan2(a, b) is the the aran? of most math libraries which returns the
arctangent of a/h. Because (#,) € [0.w] % [—m, 7], we convert to {u,v] as
follows, after first adding 2+ to o if it is negative:

lur)
M= =
2T
T—f
P ——
T

This mapping is shown in Figure 11.8. There is a similar, although likely more
complicated way. to generate coordinates for mest 31 shapes,

248 11, Texture Mapping

meshiriangle
parent

[o[1]2 \

g mash \
T EEm| 2beld]
{rmmgﬂ.rr.iang.fe / a
[1]0]3]

Figure 11.9. A three triangle mash with four vertices.

11.3 Tessellated Models

Most real-world models are composed of complexes of triangles with shared ver-
tices. These are usually known as rriangular meshes or triangular irregular ner-
waorks (TINs). Most graphics programs need to make these models without using
too much storage and with the ability to handle texture-maps.

A simple triangular mesh is shown in Figure 1 1.9, You could store these three
triangles as independent entities, and thus store point p; three times and the other
vertices twice each for a total of nine stored points (three vertices for each of three
triangles), or you could try to somehow share the common vertices and store only
four. So instead of

class triangle

material m

vectord py, Pr. Pg
you would have two classes:

class mesh

malterial m

array of vectord vertices
and

class meshtriangle

pointer to mesh meshptr

int ig, iy, ig,
where i, 1y, and i3 are indices into the verrices array. Either the mangle class or
the mesh class will work, Is there a space advantage for the mesh class? Typically,
a large mesh has each vertex being stored by about six triangles, although there
can be any number for extreme cases. This means about two triangles for each

11.3. Tessellated Models 249

shared vertex. If you have n triangles, then there are about n/2 vertices in the
shared case and 3n in the unshared case. But, when you share, you need an
additional 3n integers and n pointers. Since you don't have to store the material
in ¢ach mesh triangle, that saves n pointers, which cancels out the storage for
meshptr. 1f we assume that the data for floats, pointers, and ints all require the
same storage {a dubious assumption), the triangles will take 10n storage units and
the mesh will take 5.5n storage units. So the mesh reduces the storage by about
a factor of two; this seems to hold for most implementations. s this factor of
two worth the complication? | think the answer is ves as soon as you start adding
“properties™ to the vertices.

Each vertex can have material parameters, texture coordinates, irradiances,
and essentially any parameter that a renderer might use. In practice, these param-
eters are bilinearly interpolated across the triangle. So, if a triangle is intersected
at barycentric coordinates (9, -y}, you interpolate the (1, v) coordinates the same
way you interpolate points. Recall that the point at barycentric coordinate (4, +)
is

pld, vl =a+ 3{h—a)+~v(e—a)

A similar equation applies for [u, v):

(3, 7) = ug + Flug — wa) + vlu: —ug)s
v 3, 7) = v+ Blvy — ve) + vt = va)

0, 1) (1, 1) (@ 1) (1,05) (0.5, 1.5) {1.5,0.5)

(@, 0} {1,0) {0, 0) (1,0 (0.5, 0.5) (0.5,15)

Figure 11.10. Various mesh textures obtained by changing (u,v) coordinates stored at
vartices.

Figure 11.11. Top: a cal-
ipration texture map. Bot-
tom: the sphere viewed
along the y-axis.

Figure 11.12. Left: comrect
perspactive, Right: interpo-
lation in screen space.

250 11. Texture Mapping

Several ways a texture can be applied by changing the (u, ¢) at triangle verlices
are shown in Figure 11.10. This sort of calibration texture map makes il eas-
ier Lo understand the texture coordinates of your objects during debugging (Fig-
ure 1111},

11.4 Texture Mapping for Rasterized Triangles

We would like to get the same texture images whether we use a ray tracing pro-
gram or a rasterization method, such as a z-buffer. There are some subtleties in
achieving this with correct-looking perspective, but we can address this af the ras-
terization stage. The reason things are not straightforward is that just interpolating
texture coordinates in screen space resulis in incorrect images, as shown for the
grid texture shown in Figure 11,12, Because things in perspective get smaller as
the distance 1o the viewer increases, the lines that are evenly spaced in 3D should
compress in 2D image space. More careful interpolation of texture coordinates is
needed to accomplish this.

11.4.1 Perspective Correct Textures

We can implement texture mapping on triangles by interpolating the (u, v) coor-
dinates, modifying the rasierization method of Section 3.6, but this results in the
problem shown at the right of Figure 11.12. A similar problem occurs for triangles
if screen-space barycentric coordinates are used as in the following rasterization
code:

for all = do
for all y do
compute {a, 7,) for (2, 1)
ifore (0,1) and 3 (0, 1) and + € {(), 1) then
t =ty + Jt; + vtz
drawpixel (o, y).with color texture(t) for a solid texture
or with texture{ 4, ~) for a 2D texture.

This code will generate images, but there is a problem. To uwnravel the basic
problem, let’s consider the progression from world space g to homogeneous point
r to homogenized point 8:

Tq Ty Trfhr -
r 5 P " "

Yo | wanstorm | ¥ homogenize e/ B = |Ys

ol /| & Zoi e 2

1 ftr 1 1

11.4. Texture Mapping for Rasterized Triangles ' 251

If wi use sorcen space, we gre interpolating in s, However, we would like o be
interpolaling in space g or T, where the homogeneous division has oot yet non-
limcarly distoried the baryceninic coomdinates ol the lnangle

The key observition is that | /A s Inerpolated wilh oo distortion. Likewise,
wir 3% ow e, and ofh dn fuct, so is B4R, where Bis any gquantity that varles
lincarly across the trigngle. Reeull ftom Scction 7.4 that i we wransform all paints
along the line sepment belween points q and O aod hmoogenize, we have

hgt
__’l gy,
S ke R S 4

bur if we linearly inferpolate in the homopenized space we have
B— i — sl

Although rhose lines sweep out the same poines, rypically @ = ¢ for the same
points on the line segmeant. Lawever, if we interpolate 175, we do get the same
answer regardless of which space we interpolate in. To see this is tme, confirm
{Exercise 21

i_—._hﬁt (i_i)_l_r_(i_i) SN N

L, Fo+ilhg— b VEr Do M1, hg he
This ahilily Lo inlerpodatz 1/ A lineatly with no emmor i the ransformed space
alloaws ws b commeetly lexfurg miangles. Perhaps the leust confusing way 1o deal
with this distorion s w compee the world space barveenlric coordinales of te
wangle (i3, 7.0 10 lerms of sereen space eontdinates (30 We now that 5,70
and =,/ # ocan be inferpolared lingurly I sereen spuce. For example, 2 the senecn
space posilion associsled with sereen spuce barveentric coordinales [J,). we
can interplale 3, b withoot distortion. Becawse 3,, - U vertex (Fand vertex
2, und 3, — L al verlex 1, we have

H, [I 0 g [
S SR P LAY 115
oo oho (311 Fl-n) i (ﬁ-z h«u) (=)

Because of all the zero terms, Equation 11.5 35 Fairly simple. However, to get 3,
lrom 11, we musl know b Becawsse we know 1Ak 15 linear in screen space, we

by
] E I 17 | L
=l — =) -) 1.6
i fi‘r] ’ (h-] h.y) I <|Ft-2 .IIJ-l;.) |: }
Brividing Liguation 11.5 by Eyualion 11.6 gives

a
o = 1 1 1ﬂ'l 1 e
Er +5£(ﬂ - .ﬁ_.) . "}.(h; ,'f:;) -

AT IR |

252 11. Texture Mapping

Multiplving numerator and denominator by fiphfiz and doing a similar set of
manipulations for the analogous equations in =y, gives

g hoha8
hykhy + ha@{ha — hy) + hyylho — ha)’

i hohyy
Y hyhg + hoBlho — ha) + hav(ho — ha)

Note that the two denominators are the same.

For triangles that use the perspective matrix from Chapter 7, recall that w =
z/n where z is the distance from the viewer perpendicular to the screen, Thus,
for that matrix 1/z also varies linearly. We can use this fact to modify our
scan-conversion code for three points t; = (x,, ¥, 2. hy) that have been passed
through the viewing matrices, but have not been homogenized:

(117}

Compute bounds for & = o /h; and y = /[l
for all » do
for all y do
compute (wx, 3, 7) for (z, y)
if (a = [0,1]and 3 € [0,1] and v € [0, 1]) then
d = hyhg + haFthe — ha) + hyy(ho — ha)
Gy = hoha3/d
Y = hohyy/d
y=1— 8y —tu
U =ttt + Gty + Ywliz
U= tiyty + Fut + Yt
drawpixel (z. i) with color texture{u, v)
For solid textures, just recall that by the definition of barycentric coordinates

p=(1-8,- ':f'lu}Pn + .ﬁwp1 + TwPa,

where p, are the world space vertices. Then, just call a solid texture routine for
point p.

11.5 Bump Textures

Although, so far, we have only discussed changing reflectance using texture, you
can also change the surface normal to give an illusion of fine-scale geometry
on the surface. We can apply a bump map which perturbs the surface normal
(1. F. Blinn, 1978).

11.6. Displacement Mapping 253

One way to do this is:
vector3 n = surfaceNormal(z)
i += ky = vectorTurbulence{ ks + x)
return t = s+ (1 —#] = 51
This is shown in Figure 11.13.
To implement vectarTurbulence, we first need vectorNoise which produces a
simple spatially-varying 3D vector:

Lef=41 [y]+1 | z]+1

¥ Z Z Cyjrw(z)w(y)w(z).

i=|x] i=|y] k==

nylz, y,z) =

Then, vecrorTurbulence is a direct analog of turbulence: sum a series of scaled
versions of vectorNoise.

11.6 Displacement Mapping

One problem with Figure 11,13 is that the bumps neither cast shadows nor affect
the silhouette of the object. These limitations occur because we are not really
changing any geometry. If we want more realism, we can apply a displacement
map (Cook et al., 1987). A displacement map actually changes the geometry
using a texture. A common simplification is that the displacement will be in the
direction of the surface normal.

If we take all points p on a surface, with associated surface normal vectors n,
then we can make a new surface using a 3D texture d(p):

p'=p+ flp)n

This concept is shown in Figure 11.14,

Displacement mapping is straightforward to implement in a z-buffer code by
storing the surface to be displaced as a fine mesh of many triangles. Each veriex
in the mesh can then be displaced along the normal vector direction. This results
in large models, but it is quite robust.

11.7 Environment Maps

Often we would like to have a texture-mapped background and for objects to
have specular reflections of that background. This can be accomplished using

Wector tur-

Figure 11.13.
bulence on a sphere of ra-
dius 1.6. Lighting directly
from above, Top: ky = 0,
Middle: ki = 0.08, ky = 8.

Botom: ky = 0.24, ks=8

p

Figure 11.14. The points
p on the circle are each dis-
placed in the direction of n
by the function f(p]. If fis
confinuous, then the result-
ing points p' form a contin-
uous surface.

254 11, Texture Mapping

{ur"'lal = (T, ”

X e T

right face
has x = Iyl, x > Izl

fuv) = [0.0)
X=-y=-2

Figure 11.15. The cube map has six axis-aligned textures that store the background, The
right face contains a single texture.

environment maps (1. F, Blinn, 1976). An environment map can be implemented
as a background function that takes in a viewing direction b and returns an RGB
color from a texture map. There are many ways lo store environment maps. For
example, we can use a spherical table indexed by spherical coordinates. In this
section, we will instead describe a cube-based table with six square texture maps,
often called a cube map.

The basic idea of a cube map is that we have an infinitely large cube with
a texture on each face. Because the cube is large, the origin of a ray does not
change what the ray “sees.” This is equivalent to an arbitrarily-sized cube that is
queried by a ray whose origin is at the Canesian origin. As an example of how
a given direction b is converted to (u,) coordinates, consider the right face of
Figure 11.15. Here we have iy as the maximum magnitude component. In that
case, we can compute {w, v) for that texture 10 be

y+x
H= A
2z
-z
2z

There are analogous formulas for the other five faces.
So for any reflection ray a + th we return cubemap(b) for the background
color. In a z-buffer implementation, we need to perform this calculation on a

11.8. Shadow Maps 255

pixel-by-pixel basis. If at a given pixel we know the viewing direction ¢ and the
surface normal vector n, we can compute the reflected direction b (Figure 11.16).
We can do this by modifying Equation 9.6 (o get

2e-njn

b=—-c+
llel?

i11.8)

Here the denominator of the fraction accounts for the fact that ¢ may not be a unit
vector. Because we need to know b at each pixel, we can either compute b at
each triangle veriex and interpolate b in a perspective correct manner, or we can
interpolate n and compute b for each pixel. This will allow vs to call cuibemap(h)
at each pixel.

11.8 Shadow Maps

The basic observation 1o be made about a shadow map is that if we rendered the
scene using the location of a light source as the eye, the visible surfaces would all
be lit, and the hidden surfaces would all be in shadow, This can be used (o deter-
mine whether a point being rasterized is in shadow (L. Williams, 1978), First, we
rasterize the scene from the point of view of the light source using matrix M.,
This matrix is just the same as the full transform matrix M used for viewing in
Section 7.3, but it uses the light position for the eye and the light's main direction
for the view-plane normal.

Recall that the matrix M takes an (r, . z) in world coordinates and converts
it to an (+',y', 2') in relation to the screen. While rasterizing in a perspectively
correct manner, we can get the [, y, z) that is seen through the center of each
pixel. If we also rasterize that point using M, and round the resulting x and y
coordinates, we will get

(i, . depth).

We can compare this depth with the z value in the shadow depth map at pixel
(4, 7). If it is the same, then the point is lit, and otherwise it is in shadow, Because
of computational inaccuracies, we should actually test whether the points are the
same to within a small constant.

Because we typically don’t want the light to only be within a square window,
often a spor light is used. This attenuates the value of the light source based on
closeness to the sides of the shadow buffer. For example, if the shadow buffer is n
by n pixels, then for pixel (¢, §) in the shadow buffer, we can apply the attenuation

Figure 11.16.

The vactor

b is the reflection of vector
€ with respect to the surface

normal n,

2568 11. Texture Mapping

coefficient based on the fractional radius

= (35 (352,

Any radially decreasing function will then give a spot-like look.

Frequently Asked Questions

» How do | implement displacement mapping in ray tracing?

There is no ideal way to do it. Generating all the triangles and caching the ge-
ometry when necessary will prevent memory overload (Pharr & Hanrahan, 1996,
Pharr, Kolb, Gershbein, & Hanrahan, 1997)., Trying to intersect the displaced sur-
face directly is possible when the displacement function is restricted (Patterson,
Hoggar, & Logie, 1991; Heidrich & Seidel, 1998; Smits, Shirley, & Stark, 2000).

« Why don’t my images with textures look realistic?

Humans are good at seeing small imperfections in surfaces, Geometric imperfec-
tions are typically absent in computer-generated images that use texture maps for
details, so they look “too smooth”

= My textured animations look bad when there are many texels visible in-
side a pixel. What should | do?

The problem is that the texture resolution is too high for that image. We would
like a smaller down-sampled version of the texture. However, if we move closer,
such a down-sampled texture would look too blurry, What we really need is to
be able to dynamically choose the texture resolution based on viewing conditions
s0 that about one texel is visible through each pixel. A common way to do that
is to use MIP-mapping (L. Williams, 1983). That technique establishes a multi-
resolution set of textures and chooses one of the textures for each polygon or
pixel. Typically the resolutions vary by a factor of two, e.g., 5122, 2567, 1287,
ete,

MNotes

The discussion of perspective-correct textures is based on Fast Shadows and
Lighting Effects Using Texture Mapping (Segal, Korobkin, Widenfelt, Foran, &
Haeberli, 1992) and on 30 Game Engine Design (Eberly. 2000).

11.8. Shadow Maps 257

Exercises

1. Find several ways to implement an infinite 2D checkerboard using surface
and solid techniques. Which is best?

2. Verify that Equation 11.4 is a valid equality using brute-force algebra.

3. How could you implement solid texturing by using the z-buffer depth and
4 matrix transform?

12

A Full Graphics Pipeline

So far we have covered how to rasterize triangles and how to use transformation
matrices and z-buffers/BSP trees to create perspective views of 3D triangles. Al-
though this is the core of most modern graphics systems, there are a number of
details that must be addressed before our system is complete. We have not yet
addressed the case where some or all of a triangle is outside the view volume;
this is handled by a process called “clipping;” parts of trangles outside the view-
volume are cut away or “clipped” (Sutherland et al., 1974; Cyrus & Beck, 1978;
1. Blinn & Newell, 1978; Liang & Barsky, 1984). The other important details
in this chapter are related to improving efficiency and appearance in a graphics
pipeline.

12.1 Clipping

A common operation in graphics is clipping, where one geometric entity “cuts”
another. For example, if you clip a triangle against the plane = = (), the plane
cuts the triangle. In most applications of clipping, the portion of the triangle on
the “wrong” side of the plane is discarded. Here the wrong side is whichever side
is specified by the details of the application. This operation for a single plane is
shown in Figure 12.1.

This section discusses the basic implementation of a clipping module. Those
interested in implementing an industrial-speed clipper should see the book by
Blinn mentioned in the notes at the end of this chapter.

259

]

Figure 12.1.

A polygon

is clipped against a clipping
plane. The portion “inside”
the plana is retained.

260 12. A Full Graphics Pipeline

1 multiply vertex
tfangle —»-positions by | tiangie —» NOMOQENAOUS L iriangle —- | rastarize
xyz7) ansform matrix [(¥ l2w) (XA i riw 7)

2 @

Figure 12.2. A bare-bones graphics pipeline with three possibilities for where to do clip-
ping. The geometry associated with Options 1 and 3 are illustrated above the pipelineg, The
geometry associated with Option 2 is four-dimensional and thus too hard to depict.

12.2 Location of Clipping Segment of the Pipeline

The basic graphics pipeline takes triangles with vertices in world coordinates and;
s multiplies each vertex by a transformation matrix,
o divides each component of the vertex by its homogeneous coordinate,

e rasterizes the triangle.

12.2. Location of Clipping Segment of the Pipeline 261

The big question for clipping is where in the pipeline to do it. The possible loca-
tions are shown in Figure 12.2; they are;

1. in world coordinates using the six planes that bound the truncated viewing
pyramid,

2. in the 4D transformed space before the homogeneous divide,
3. in the transformed 3D space with respect to the six axis-aligned planes.

Any of the possibilities can be effectively implemented (). Blinn, 1996). For all
of them, the triangle-based implementation for a single triangle is:

for each of six planes do
if (triangle entirely outside of plane) then
break (triangle is not visible)
else if triangle spans plane then
clip triangle
if (quadrilateral is left) then
break into two triangles

The only question is which six planes to use at what stage of the pipeline.

12.2.1 Clipping After the Perspective Divide (Option 3)

At first glance, it seems that Option 3 is the easiest to implement and the most
efficient. The six plane equations are simple and efficient to evaluate:

—r+1=0
r—r=UuU
—y+b=10
y—t=10
—z+n=10
z—Ff=10

These plane equations are set up to be positive for any point outside the view
volume. However, Option 3 is in fact the most problematic for a subtle reason
{see Figure 12.3). Although the perspective transform does preserve depth order
for depths greater than zero, it has a discontinuity at zero depth. Recall the actual
transform after the homogeneous divide:

z’=n-+-f——'f7.

262 12. A Full Graphics Pipeline

i
I 1 £
(2=n | z=f
| I
| |
| |
i h:

[+ i

|
|
I
1 |
aye a
j i
,ml
] h'l
i
I
I
I
I
By =—a g’
| gaze 1 c'
| direction |

Figure 12.3. The depth z s transformed to the depth z' by the perspactive transform. Note
that when z moves from positive to negative, 2" switches from negative to positive. Thus
vertices behind the eye are moved in front of the eye beyond z' = n + £ This can make
clipping complicated, for example, for the triangle shown,

12.2. Location of Clipping Segment of the Pipeline 263

12.2.2 Clipping Before the Transform (Option 1)

Option 1 has a straightforward implementation. The only question is, “What are
the six plane equations?” Because these equations are the same for all triangles
rendered in the single image, we do not need to compute them very efficiently.
For this reason, we can just invert the transform shown in Figure 5.11 and apply
it to the eight vertices of the transformed view volume:

(x,0,2) =, bn)
(7, bn)
(It n)
(v, t.n)
{1,b. f)
(rb f)
(.t f)
(r. 8. f)

The plane equations can be inferred from here, Alternatively, we can use vector
geomeiry (o gel the planes directly from the viewing parameters.

12.2.3 Clipping in Homogeneous Coordinates (Option 2)

Surprisingly, the option usually implemented is that of clipping in homogeneous
coordinates before the divide. Here the view volume is 4D, and it is bounded by
3D volumes (hyperplanes). These are:

-r+lw=10
r=riw=1{
—y+bw =1
y—tw=1
—z+nw=10
g—Ffw=0

These planes are gquite simple, so the efficiency is better than for Option 1. They
still can be improved by transforming the view volume [I,] = [b#] = [n, f] o
[0, 1]%, 1t turns out that the clipping of the triangles is not much more complicated
than in 3D.

264 12. A Full Graphics Pipeline

12.2.4 Clipping Against a Plane

Mo matter which option we choose, we must clip against a plane. Recall from
Section 2.7.2 that the implicit equation for a plane through point g with normal
nis

flp)=n-(p-q)=0
This is often written

flp)=n-p+ D=0 (12.1)

Interestingly, this equation not only describes a 3D plane, but it also describes a
line in 2D and the volume analog of a plane in 4D, All of these entities are usually
called planes in their appropriate dimension,

If we have a line segment between points a and b, we can “clip” it against a
plane using the techniques for cotting the edges of 3D triangles in BSP tree pro-
grams described in Section 8.1.3. Here, the points a and b are tested 1o determine
whether they are on opposite sides of the plane f{p) = 0 by checking whether
fia) and f{b) have different signs. Typically f(p) < 0 is defined to be “inside™
the plane, and f(p) = 0 is “outside” the plane, If the plane does split the line,
then we can solve for the intersection point by substituting the equation for the
parametric line,

p=a+t{b—a),

into the f{p) = 0 plane of Equation 12.1. This yields
n:-(at+tb—a))+ D=0

Solving for t gives
_n:a+D
T n-{a—b)
We can then find the intersection point and “shorten™ the line.
To clip a triangle, we again can follow Section 8.1.3 to produce one or two
triangles .

12.3 An Expanded Graphics Pipeline

A full graphics pipeline typically adds shading and some efficiency modes to
make a full system. These pipelines are usually optimized to render large numbers
of small triangles. This section discusses several issues which must be handled in
the pipeline.

12.4. Backface Elimination 265

12.3.1 Culling

When the entire triangle lies outside the view volume, it can be culled, i.e.. elimi-
nated from the pipeline. In practice, perfect culling is more expensive than letting
the clipping module eliminate the object. Culling is especially helpful when many
triangles are grouped into an object with an associated bounding volume. 1f the
bounding volume lies outside the view volume, then so do all the triangles that
make up the object. For example, if we have 1000 triangles bounded by a single
sphere with center ¢ and radius v, we can check whether the sphere lies outside
the clipping plane,
ip—a)-n=10,

where a is a point on the plane, and p is a variable. This is equivalent to checking
whether the signed distance from the center of the sphere ¢ to the plane is greater
than +r. This amounts to the check that

fc=a)l'n

- o8
([l

Mote that the sphere may overlap the plane even in a case where all the triangles
do lie cutside the plane. Thus, this is a conservative test. How conservative the
test is depends on how well the sphere bounds the object.

12.3.2 Lighting and Shading

Lighting and shading must be placed somewhere in the pipeline. Traditionally,
lighting has been done at vertices early in the pipeline, and pixels between the
vertices have their colors set using barycentric interpolation at the rasterization
stage. However, if normal interpolation is used at the rasterization stage, then it
makes more sense to defer lighting until the rasterization stage. This is the trend
in most modern pipelines,

12.4 Backface Elimination

When polygonal models are closed, i.e., they bound a closed space with no holes,
then they are often assumed to have putward facing normal vectors as discussed
in Chapter 9. For such models, the polygons that face away from the eye are
certain to be overdrawn by polygons that face the eye. Thus, those polygons can
be colled before the pipeline even starts. The test for this condition is the same
one used for silhouette drawing given in Section 9.3.1.

266 12. A Full Graphics Pipeline

12.5 Triangle Strips and Fans

Two fundamental primitives associated with most modern graphics pipelines are
triangle strips and triangle fans,

A triangle fan is shown in Figure 12,4, In a simple triangle-drawing pipeline,
the needed calls would be:

draw (py. Py Pa)

S draw (p;. pa. Py)
)

)

draw {pl'.l" p'.':ls Py
draw (pg. py. Ps

FI:I Py

Figure 124. A firiangle Note that this requires twelve vertices to pass through the pipeline, although there

(oo are only six distinct vertices, The triangle fan assumes an axis vertex and a series
of other vertices being swept out like the ends of a collapsible fan, This function
call is something like:

triangle-fan (py. Py, Py P3Py Pr)

The first vertex is assumed to be the axis. Often the APT will have a function call
for each vertex so that a variable number of arguments in not required in the call.
The triangle strip is a similar concept, but it is designed for more traditional
meshes. Here, vertices are added alternating top and bottom in a linear strip as
shown in Figure 12.5. Long triangle strips will save approximately a factor of
three if the program is vertex-bound.
Figure 12.5. A triangle It might seem that triangle strips are only useful if the strips are long. How-
Strip. ever, that is not the case. If the runtime is proportional to the number of vertices
transferred, the savings are as follows:

strip length | 2 3 4 5 f 7 b 6 | 100 | eo
relative ime | 10O | 067 | 056 | 050 | 047 | 044 | 043 | 042 | 038 | 034 | 033

So, in fact, there is a rather rapid diminishing return as the strips grow longer,
and the optimal strip size in practice should not exceed the buffer size on the
hardware, Thus, even for an unstructured mesh, it is worthwhile to use some
greedy algorithm to gather them into short strips.

12.6 Preserved State

When processing vertices for scan conversion and lighting. it is necessary to know
the shading mode, e.g,, is lighting on or off. In addition, it is necessary to know
the color and/or material properties of each vertex. Many APIs suppon the ability

12.7. A Full Graphics Pipeline 267

multiply wvertex I
backface =] uf'm by clip | mﬂ'ﬂlﬂlﬂul_‘_ rasterize

o
cull m.ml'nrm matri and light

Flgure 12.6. A full graphics pipeling. Polygons enter at the left and pass one by one through
each stage of the pipeline.

to share such state information across triangles, For example, a simple implemen-
tation that does not share state information might have the calls:
set-triangle-attributes 1
draw-triangle 1
set-triangle-attributes T
draw-triangle T

Here both 77 and T are processed through the graphics pipelineg each with its own
set of attributes, such as veniex color. Instead, in APIs/hardware that support the
sharing feature, we can set the state for all tnangles going through the pipeline:

sel-state-triangle-atributes

draw-triangle T

draw-triangle T3

Here both triangles are drawn with the same attributes. This can result in a con-
siderable efficiency increase on some hardware.

Another state that can be saved is the geometry itself. This is useful in appli-
cations where a significant fraction of the geometry does not change from frame
to frame. The geometry is saved in a display list. This can result in increased ef-
ficiency for two reasons. First, if the hardware allows, the display list can live on
the graphics board and does not need to be transferred across the bus from main
memory to the graphics board each frame. Second, the list can be optimized to
improve performance. For example, triangles that share the same vertex/shading
properties can be grouped so that they can live within the same set of calls with
shared attributes.

12.7 A Full Graphics Pipeline

As mentioned in the clipping section, the pipeline can be arranged in a number of
ways, The modern trend seems to be to move shading to the rasterization stage
because better visual quality results. Such a pipeline is shown in Figure 12.6.

A number of other issues must be addressed in a full pipeline that the pro-
srammer should be somewhat aware of when efficiency lapses. Otherwise. they
are principally in the domain of hardware designers. These include:

268 12. A Full Graphics Pipeline

* Are polygons rasierized directly in the pipeline or are they triangulated at
the beginning of the pipeline?

o How are textures handled? Are they stored at multiple levels of detail (e.g..
MIP-maps (L. Williams, 1983))7 Is there a fixed-size texture memory?

Frequently Asked Questions

» I've often seen clipping discussed at length, and it is a much more in-
volved process than that described in this chapter. What is going on here?

The clipping described in this chapter works, but lacks optimizations that an
industrial-strength clipper would have. These optimizations are discussed in de-
tail in Blinn's definitive work listed in the chapter notes.

= The documentation for my API talks about "scene graphs” and "matrix
stacks.” Are these part of the graphics pipeline?

The graphics pipeline is certainly designed with these in mind, and whether we
define them as part of the pipeline is a matter of taste. This book delays their
discussion until the next chapier.

Notes

A wonderful book about designing a graphics pipeline is Jim Blinn's Corner:
A Trip Down the Graphics Pipeline (1. Blinn, 1996)). Many nice details of the
pipeline and culling are in 30 Game Engine Design (Eberly, 2000) and Real-Time
Rendering {Akenine-Moller & Haines, 2002),

Exercises

1. Suppose that in the perspective transform we have n = 1 and f = 2. Under
what circumstances will we have a “reversal” where a vertex before and
after the perspective transform flips from in front of to behind the eye or
vice-versa?

2. Is there any reason not to clip in & and y after the perspective divide (see
Figure 11.2, stage 3)7

13
Data Structures for Graphics

There are a variety of data structures that seem to pop up repeatedly in graphics
applications. This chapter talks about three basic and unrelated data structures
that are among the most common and useful. There are many variants of these
data structures, but the basic ideas behind them can be conveyed using an example
of each.

First the winged-edge data structure for storing tessellated geometric mod-
els is discussed (Baumgart, 1974), The winged-edge data structure is useful for
managing models where the tessellation changes, such as in subdivision or sim-
plification routines.

Mext, the scene-graph data structure is presented. These are rapidly becoming
well supported features of all new graphics APls because they are so useful in
managing objects and transformations.

Finally, the tiled multidimensional array is presented. Originally developed o
help paging performance. such structures are now crucial for memory locality on
machines regardless of whether the array fits in main memory,

13.1 Triangle Meshes

One of the most common model representations is a polygonal mesh as discussed
in Section 11.3. When such meshes are unchanging in the program, the simple
structure described in that section is usually sufficient. However, when the meshes
are to be modified, more complicated data representations are needed to efficiently
answer gueries such as:

269

270 13. Data Structures for Graphics

® given 1 triangle, what are the three adjacent triangles?
s given an edge, which two triangles share it?
e given a vertex, which faces share it?

s given a veriex, which edges share it?

There are many data structures for trisngle meshes, polygonal meshes, and polyg-
onal meshes with holes (see the notes at the end of the chapter for references). In
many applications the meshes are very large, so an efficient representation can be
crucial.

The most straightforward, though bloated, implementation is to have three
types: vertex, edge, and triangle. There are a variety of ways to divide the data
among these types. While one might be tempted to just store all the relationships,
this makes for variable-length data structures that really are not needed. For ex-
ample, a vertex can have an arbitrarily large number of edges incident to it.

It is best, therefore, to hide the implementation behind a class interface.

13.2 Winged-Edge Data Structure

We can use the class winged-edge data structure. This data structure makes edges
the first-class citizen of the data structure. This data structure, a more efficient
implementation, is illustrated in Figures 13.1 and 13.2.

cdge vertex | vertex| face | face | pred | succ | pred | Succ
1 2 feft | right | left | teft | right | right

a B A 1] 1 C b d [

Figure 13.1. An edge in a winged-edge dala structure. Stored with each edge are the
face (polygon) to the left of the edge. the face to the right ol the edge, and the previous and
successor adges in the traversal of each of those faces.

13.2. Winged-Edge Data Structure 271

/D
\ :
3 En C
A ——1- _1_
b d @
A
B
a A) 3 0 f 8 c b
b A B 1] 2 a C d f
s B D L 1 b a e d
d B C 1 2 C e f b
8 c D 1 3 d c a f
f C A 3 2 e 8 b d
vertex | edge face | edge
A a 0 a
B d 1 ¢
c d 2 d
D 8 3 a

Figure 13.2. A tetrahedron and the assoclated elements for a winged-edge data structure.
Tha two small tables are not unigue; each vertax and face stores any one of the edges with
whieh it is associated.

Mote that the winged-edge data structure makes the desired queries in constant
time. For example. a face can access one of its edges and follow the traversal
pointers to find all of its edges. Those edges store the adjoining face.

As with any data structure, the winged-edge data structure makes a variety
of time/space trade-offs. For example, we could eliminate the prev references.
When we need to know the previous edge, we could follow the successor edges
in a circle until we get back to the original edge. This would save space, but it
would make the computation of the previous edge take longer. This type of issue
has led o a proliferation of mesh data structures (see the chaptér notes for more
information on those structures),

272 13. Data Structures for Graphics

Flgure 13.3. A hinged pendulum. On the left are the two pieces in their “ocal” coordinate
systams. The hinge of the top plece is at point b and the attachment for the bottom piece is
at its lacal origin. The degrees of freedom for the assembled object are the angles (&, and
the location p of the top hinga.

13.3 Scene Graphs

To motivate the scene-graph data structure, we will use the hinged pendulum
shown in Figure 13.3. Consider how we would draw the top part of the pen-
dulum;

M, = rotate(f)
My = translate(p)
My = MM,

Apply M3 1o all points in upper pendulum

The bottom is more complicated, but we can take advantage of the fact that it is
attached to the bottom of the upper pendulum at point b in the local coordinate
system. First, we rotate the lower pendulum so that it is at an angle ¢ relative to
its initial position. Then, we move it so that its top hinge is at point b. Now it is
at the appropriate position in the local coordinates of the upper pendulum, and it
can then be moved along with that coordinate system. The composite transform
for the lower pendulum is:

M, = rotate(d)
M, = translate(b)
M, = MM,
M, = MsM.,

Apply M, to all points in lower pendulum

Thus, we see that the lower pendulum not only lives in its own local coordinate
system, but also that coordinate system itself is moved along with that of the upper
pendulum,

Plate |. The RGE color
cube in 30 and its faces un-
folded. Any RGBE color is a
point in the cube. (See also
Figure 3.4.)

Plate Il. A colored fine
switching from red to green,
The middle pixel is half red
and half green which is a
‘dark yellow”, (See also
Figure 3.9.)

Plate lll. A colored triangle
with barycentric interpola-
fion. MWote that the changes
in color components are lin-
ear in each row and column
a3 wall as along each edge.
In fact it fs constant along
every line, such as the di-
agonals, as well. (See also
Figure 3.10.)

b
aon bt e ©1

0,1.7) (1.1.7)

{1,1.0) 0.1.71)

[
(1,1,0)
(r.g,b) = (0.00, 1.00, 0.00), t = 1.00
| (r.g.b) = (0.25, 0.75, 0.00), t=0.75
(rg,b) = (0.50, 0.50, 0.00), t=0.50
(r.g.b) = (0.75, 0.25, 0.00), t=D0.25
{r,g,b} = (1.00, 0.00, 0.00), t=0.00
|
(x0,y0) (x1,y1)

Plate IV, The affect of the
Phong exponent an high-
light charactarnslics, The
uses Equation 9.5 for the
highlight, There is alss
a diffuse component, gi-
ing the objects a shiny
bl non-metalic appear-
ance. Image courtesy of
MNata Robins, (See also Fig-
ure 9.6,

Plate V. Left: a Phong
lfurminated image. Widds;
cool-to-warm shading & nol
useful without silhousties,
Right: cool-to-wanm shad
ing plus silhouettes. imagd
courtesy Amy Gooch, {588
al=o Figure 9.9.)

Plate VI. The color of the
glass is affected by total in-
ternal reflaction and Beer's
Law, The amount of light
fransmitted and reflected is
determined by the Fresnel
Equations. The complex
lighting on tha ground plana
was computad using parti
cle tracing as described in
Chapter 23. (See also Fig-
ura 10.11.)

Plate VIl. An example of
depth of field. The caus-
fic in the shadow of the
wine glass is computed us-
ing particle tracing (Chap-
ter 23} {See also Fig-
ure 10.34.}

Plate VIll. Each sphere is
rendered using only a ver-
tex shader that computes
Phong shading. Becausa
the computation is being
performed on a per-varbax
basis, the Phong highlight
only begins to appear accu-
rate after tha amount of ge-
omelry used to model the
sphera is increased dras-
tically. (See also Figure
17.7.)

Plate IX. The resulis
of running the fragment
shader from Section 17.3.4.
Mate that the Fhong high-
light does appear on the
left-mast model which &
rapresentad by a =ingla
palygon. In fact, be-
cause lighting is cakculated
at the fragment, rather than
at each vertex, the more
coarsaly tessellated sphess
madsels also demonsirals
appropriate Phong shad-
Ing. (See also Figure 17.8)

Plata X. Par-channa!
gamma corection may
dgesaturate the image. The
left image was desalurated
with a value of 5 = 0.5
The right image was not
desaturated (s = 1). [See
also Figure 22.11.)

Plate XIl. The image on the
Ieft is used to adjust the col-
ara of the image shown in
Color Plate XI. The result
is shown on the right. {See
alzo Figure 22.13.)

Plate XI. Image used
for demonstrating the color
transfer techrique. Re-
sults are shown in Color
Plates Xl and XIV. (See
alzo Figure 22.12 and Fig-
ure 22.30.)

Plate Xill. Linear interpo-
lation for color correctian

The parameter ¢ is sel o

0.0 in the left Image and to ,I
1.0 in the right Image. (Sag
also Figure 22.24,)

Plate XI¥. The imaga on
the left is used to transform
the image of Color Plate X1
into & night scene, shown
hera on the fght. (See also
Figure 22.31.)

Plate XV. Simulated night
scene using the image
shown in Color Plate XL
{See also Figure 22.30,)

Plate XVI. The visible
spectrum. Wavelengths are
in nanomaters.

Plate XIX. The offect
shown in Figure 21.29 is
even more powerful when
shown in color. Figure cour-
lfesy of Albert Yonas,

'.-'rr

-rg X - £ fr

flfrl"!"?‘r'
pr'lf

Plate XVI. HSVY colar
space. Hue varies araund
the eircle, saturation varies
with radius. and value
varies with height,

Plate XVill. Which color is
closer fo red: green or vig-
let?

Plate XX. Aarial perspac
tive, in which atmosphernic
effects reduce contrast and
shift colors lowards blug
provides a depth cue over
long distances

Plate XXl. A compariso
between a rendering and
a photo, Figure courfesy
Sumant Pattanalk and he
Cornell Program of Com-
puter Graphics. (Sea also
Figure 23.9.)

Plate XXIl. The mage
shows axtreme motion blur
efiects. The shadows use
distribution ray tracing bés
cause they are moving dur-
ing the image, Modal by
Joseph Hamdorf and Yaung
Song. Rendering by Eric
Levin

Plate XX, Distribution ray-treced images with 1 sample
par pixel, 16 samples per pixel, and 256 samples per pixel
Images courtesy Jasan Wallman

Plate XXIV. Top: A dif-
fuse shading model is used,
Bottom: Subsurace scatter-
Ing ‘i= allowed using a tech
nigue from *A Practical Model
for Sub-surface Light Trans-
port)' Jensen et al., Procead-
ings of SIGGRAPH 2001, Im-
ages courtesy Hanrik Jensen,

—

Plate XXV, Ray-traced and
photon-mapped image of
an interior, Most of tha light-
ing is indirect. fmage cobr-
tasy Henrk Jensen,

Plate XXVI. The brightly
colored pattern in the
shadow is a “caustic” and
= a product of ight focused
through the glass. It was
computad using pholon
fracing. Image courtesy
Henrk Jenseh

Plate XXVIL Top: A set ol |
ellipsoids approximates the
model. Bottom: The ellig-
soids are used to crete 4
gravity-like implcit function
which is then displaced. Im- §
age courtasy Eric Levin, I

13.3. Scene Graphs 273

We can encode the pendulum in a data structure that makes management of
these coordinate system issues easier, as shown in Figure 13.4. The appropriate
matrix to apply to an object is just the product of all the matrices in the chain from
the object to the root of the data structure. For example, consider the model of a
ferry that has a car that can move freely on the deck of the ferry, and wheels that
each move relative to the car as shown in Figure 13.5.

As with the pendulum, each object should be transformed by the product of
the matrices in the path from the root to the object:

ferry transform using Ay

car hody transform using M M,

left wheel transform using Mg M, A

left wheel transform using Ay, A, Ay

An efficient implementation can be achieved using a matrix stack, a dala structure
supported by many APIs. A matrix stack is manipulated using push and pop op-
erations that add and delete matrices from the right-hand side of a matrix product.
For example, calling:

push{My)
push(M,
push| M)

creates the active matrix M = MyM, M. A subsequent call to popy) sirips the
last matrix added so that the active matrix becomes: M = MyM,;. Combining
the matrix stack with a recursive traversal of a scene graph gives us;

function traverse|node)

pHSh{Mlmal}

draw object using composite matrix from stack
traverse(left child)

traverse(right child)

pop(]

There are many variations on scene graphs but all follow the basic idea above.

M,

Figure 13.4. The scens

graph for the hinged pendu-
lum of Figure 13.3,

@
©

]

Figura 13.5. A ey,
a car on the ferry, and
the wheals of the car (only
two shown) are stored in a
scana-graph.

274 13. Data Structures for Graphics

13.4 Tiling Multidimensional Arrays

Effectively utilizing the cache hierarchy is a crucial task in designing algorithms
for modern architectures. Making sure that multidimensional arrays have data in a
“nice” arrangement is accomplished by fifing, sometimes also called bricking. A
Flla |5 |6 |7 traditional 2D array is stored as a 1D array together with an indexing mechanism;
=o0lgl1]|z2]3 for example, an N, by N, array is stored in a 1D array of length NN, and the
2D index (i, y) (which runs from (0, 0} to (Ny — 1. &, — 1)) and maps it (o the
1D index {running from 0 to NN, — 1 using the formula

F2le|la ||

=0 =1 j=2 i=3

Figure 13.6. The memaory
layout for an untiled 2D ar-
ray with Ny = 4 and N, =
a3

index = o+ N,y.

An example of how that memory lays out is shown in Figure 13.6. A problem with
this layout is that although two adjacent array elements that are in the same row
are next to each other in memory, two adjacent elements in the same column will
be separated by N, elements in memory. This can cause poor memory locality
for large V. The standard solution to this is to use riles 1o make memory locality
for rows and columns more equal. An example is shown in Figure 13.7 where
two by two tiles are used. The details of indexing such an array are discussed in
2|3 &} the next section. A more complicated example with two levels of tiling on a 3D
=ola i1 14| s array are coverad after that,

A key question is what size to make the tiles, In practice, they should be
similar to the memory-unit size on the machine. For example, on a machine
Flgure 13.7. The mem- with 128-byte cache lines, and using 16-bit data values, n is exactly 8, However,

=l a g 12|13

=0 =1 =2 =8

:::Fa;wwt::]r: E" a_m‘f a?_g using float (32-bit) datasets, n is closer to 5. Because there are also coarser-sized
Ny = 3and h-:a by twa tiles, memory units such as pages, hierarchical tiling with similar logic can be useful.

Mote that padding on the
top of the array s needed ;
because Ny is not a multi- 13.4.1 One-Level Tiling for 2D Arrays

ple of the tile size two.
If we assume an N, by N, array decomposed into square n by n tiles (Fig-

ure 13.8), then the number of tiles required is

B, = Ng/n.

B, =N, /n.
Here, we assume that n divides N, and N, exactly. When this is not true, the
array should be padded. For example, if N, = 15 and n = 4, then N, should
be changed to 16. To work out a formula for indexing such an array, we first find
the tile indices (b, b,) that give the row/column for the tiles (the tiles themselves
form a 2D array):

bp=2+n,

by =y +n,

13.4. Tiling Multidimensional Arrays : 275

4
g2
w8
T O |
© i
£ i
® .L 1 "
E] aE
g
i
¥

& elemanis
B_g' = -'"l'lz;":’-' hlocks

Figure 13.8. Atiled 20 aray composed of By by B, tiles each of size mby n,

whers = s neger division, cg, 12 0 b — 20 If we ander the tiles alomg nows as
shorwn i Figure 13,6, then the index of the first element of the tile (b by, is

index — 2 (B0, + 5,0

The memory in that tile is arranged like a waditional 21 array as shown in Fig-
ure 13,7, The pantial offsets (', ') inside the tile are

' — 1 monl e,

y' —ymod n,
where modd is the remaindet operawor, ¢g, 12 mod 5 — 2, Therefore, the offset
inside the tile is

obisel — y've + 27
Thus the full lurmala for finding the 1D index element (x5 inan AV, by N,
array with n by n tiles iy
index = wf{ Baby « Bod ooy w,
B a mw . N . . N .
=w[INg trlly : 0t +x) e (ymod R+ G mad 20,

This caprossicn cootains many micger muliplication, divide and modolus oper-
atons, On modern processocs, these operalions are exiremnely costly. For m that

are powers of twa, these operations can be converled to bitshifts and bitwise log-
ical operations. However, a5 noted sbhove the idedd siae is not always o power

278 13. Data Structures for Graphics

of two, Some of the multiplications can be converted to shift/add operations, but
the divide and modulus operations are more problematic. The indices could be
computed incrementally, but this would require tracking counters, with numerous
comparisons and poor branch prediction performance,
However, there is a simple solution; note that the index expression can be
written as
index = F.(x) + F,(y),

where
Fe(z) = n*(x = n) + (x mod n),
E,(y) = n*(N, =+ n)(y +n) + (y mod n)n.

We tabulate Fy and F,,, and use & and y to find the index into the data array.
These tables will consist of N, and N, elements, respectively. The total size of
the tables will fit in the primary data cache of the processor, even for very large
data set sizes.

13.4.2 Example: Two-Level Tiling for 3D Arrays

Effective TLB wvtilization is also becoming a crucial factor in algorithm perfor-
mance. The same technique can be used to improve TLB hit rates in a 3D array
by creating m = m » m bricks of i % n % n cells. For example, a 40 x 20 = 19
volume could be decomposed into 4 = 2 x 2 macrobricks of 2 = 2 » 2 bricks of
5 x5 x 5 cells. This corresponds to m = 2 and n = 5. Because 19 cannot be
factored by mmn = 10, one level of padding is needed. Empirically useful sizes
are . = 5 for 16 bit datasets and m = 6 for float datasets,

The resulting index into the data array can be computed for any (i, i, =) triple
with the expression

index = ((r+n)+mn*m® (N, +n)=m)((N, - n)+m)
+{(y=n) =mm*m? (N, = n) =m)
(z+n)+min*m’

+(
+({x <+ n) mod m)n*m?

+

((y + n) mod m)n*m
+((z + n) mod m)n®
+{x mod (n?))n®

+{y mod n)n

+{z mod n),

where Ny, N, and N. are the respective sizes of the dataset.

13.4. Tiling Multidimensional Arrays 277

MNote that, as in the simpler 2D one-level case, this expression can be written as
index = Fy{z) + F,(y) + F:(z),
where

Foz) = ((z+n)+min®mi((N.+n)+ m) [Ny +n) +m)
+{(z + n) mod m)n’m?

+{z mod n)n?,

Fy) = ((y=n)= m]n3m.3[m’* 1) -+ m)
+({y +n) mod m)n*m +
+{y mod n)n,
F.z) = ((z+n)=m)n*m®
+((z = n) mod m)n®
+iz mod n),

Frequently Asked Questions

» Does tiling really make that much difference in performance?

On some volume rendering applications, a two-level tiling strategy made as much
as a factor-often performance difference. When the array does not fit in main
memaory, it can effectively prevent thrashing in some applications such as image
editing,

» How do | store the lists in a winged-edge structure?

For most applications it is feasible o use arrays and indices for the references.
However, it many delete operations are to be performed, then it is wise 10 use
linked lists and pointers.

Notes

The discussion of the winged-edge data structure is based on the course notes of
Ching-Kuang Shene (Shene, 2003). There are smaller mesh data structures than
winged-edge, The trade-offs in using such structures is discussed in Directed
Edpes— A Scalable Representation for Triangle Meshes (Campagna, Kobbelt, &

278 13. Data Structures for Graphics

Seidel, 1998). The tiled-array discussion is based on Interactive Ray Tracing for
Volume Visualization (Parker, Martin, et al., 1999},

Exercises

1. What is the memory difference for a simple tetrahedron stored as four in-
dependent triangles and one stored in a winged-edge data structure?
2. Diagram a scene graph for a hicycle.

3. How many look-up tables are needed for a single-level tiling of an n-
dimensional array?

14

Sampling

Many applications in graphics require “fair” sampling of unusual spaces, such as
the space of all possible lines. For example, we might need to generate random
edges within a pixel, or random sample points on a pixel that vary in density
according to some density function. This chapter provides the machinery for such
probability operations. These techniques will also prove useful for numerically
evaluating complicated integrals using Monte Carle infegration, also covered in
this chapter,

14.1 Integration

Although the words “integral™ and “measure”™ often seem intimidating, they relate
o some of the most intuitive concepts found in mathematics, and they should not
be feared. For our very non-rigorous purposes, a measure s just a function that
maps subsets to BT in a manner consistent with our intuitive notions of length,
area, and volume, For example, on the 2D real plane B2, we have the area measure
A which assigns a value to a set of points in the plane. Note that A is just a
function that takes pieces of the plane and returns area. This means the domain of
A is all possible subsets of B2, which we denote as the power ser P{IR?). Thus,
we can characterize A in arrow notation:

A P(R?) — RT,

279

280 14, Sampling

An example of applying the area measure shows that the area of the sguare with
side length one is one:

Alla,a+ 1] = [bb+1]) =1,

where (a.0) is just the lower lefi-hand corner of the square. Note that a single
point such as (3, 7) is a valid subset of B? and has zero area: A{(3,7)) = (. The
same is true of the set of points S on the x-axis, § = (&, y) such that (i, y) € R?
and y = 0, 1.e., A[S) = 0. Such sets are called zero measure sets.

To be considered 4 measure, a function has to obey certain area-like properties,
For example, we have a function ;& : P(8) — R™. For p to be a measure, the
following conditions must be true:

I. The measure of the empty set is zero: p(@) = 0,

2. The measure of two distinct sets together is the sum of their measure alone,
This rule with possible intersections is

(AU B) = p(A) + p(B) — p(AN B),
where LI is the set union operator and M is the set intersection operator,

When we actually compute measures, we usuvally use integration. We can think
of integration as really just notation:

A(S) = fesdﬂfx}_

You can informally read the right-hand side as “take all points x in the region 5,
and sum their associated differential areas”. The integral is often written other
ways including

[u:A. %, [i Ax, [dx
I XeS XeS I

All of the above formulas represent “the area of region 5" We will stick with the
first one we used, because it is so verbose it avoids ambiguity, To evaluate such
integrals analytically, we usually need to lay down some coordinate system and
use our bag of calculus tricks to solve the equations. Bul have no fear if those
skills have faded, as we usually have to numerically approximate integrals, and
that requires only a few simple technigues which are covered later in this chapter.

Given a measure on a set 5, we can always create a new measure by weighting
with a non-negative function w : 8 — R*. This is best expressed in integral

141, Integration 281

notation. For example, we can start with the example of the simple area measure

on [0, 1]%:
f dA(x),
Xelo,1]2

and we can use a “radially weighted” measure by inserting a weighting function

of radius squared:
[A,
Xe(h,1)?

To evaluate this analytically, we can expand using a Cartesian coordinate system
with dA = dr dy:

1 1
[e = [[@) dedy
Ae[n1je o= J y=0

The key thing here is that if you think of the ||x[/? term as married to the 4.4 term,
and that these together form a new measure, we can call that measure . This
would allow us to write (5} instead of the whole integral, If this strikes you
as just a bunch of notation and bookkeeping, you are right, But it does allow us
to write down equations that are either compact or expanded depending on our
preference,

14.1.1 Measures and Averages

Measures really start paying off when taking averages of a function. You can
only take an average with respect to a particular measure, and you would like 1o
select a measure that is "natural™ for the application or domain. Once a measure
is chosen, the average of a function f over a region S with respect to measure g is

_ Jues F1x) dp(x)
average(f) = m

For example, the average of the function f(x, y) = 22 over [0, 2]* with respect to
the area measure is
Joso .I:=n a? da dy 4

average(f) = ff:[l f::u dx dy E

This machinery helps solve seemingly hard problems where choosing the measure
is the tricky part. Such problems often arise in integral geomerry, a field that
studies measures on geometnc entities, such as lines and planes. For example.

al

Figura 14.1. Thesea
two bundles of lines should
have the sama measure.
They have different inter-
section lengths with the
y-axis so using dbwould ba
a poor choice for & diffaren-
tial measure.

Yi

.

Figure 14.2. These
two bundles of lines should
haye the same measure,
Since they have different
values for change in slops,
using dm would be a poor
cholge for a differantial
Measure.

282 14. Sampling
one might want to know the average length of a line through [0, 1], That is, by
definition,

Jiines 1 thogh [0, 172 1€ngth(L)dpe(L)
Jines 1 through [0, 1]* dpfL)

average{length) =

All that is left, once we know that, is choosing the appropriate ¢ for the applica-
tion. This is dealt with for lines in the next section,

14.1.2 Example: Measures on the Lines in the 2D Plane

What measure (15 “natural™?

If you parameterize the lines as y = mua + b, you might think of a given line
as a point (e, b) in “slope-intercept” space. An easy measure to use would be
iy i, but this would not be a *good” measure in that not all equal size “bundles”
of lines would have the same measure. More precisely, the measure would not be
invariant with respect to change of coordinate system. For example, if you took
all lines through the square [0, 1]%, the measure of lines through it would not he
the same as the measure through a unit square rodated forty-five degrees. What
we would really like is a “fair” measure that does not change with rotation or
translation of a set of lines. This idea is illustrated in Figures 14.1 and 14,2,

To develop a natural measure on the lines, we should first start thinking of
them as points in a dual space. This is a simple concept: the line y = mx + b
can be specified as the point (m.b) in a slope-intercept space. This concept i
illustrated in Figure 14.3, Tt is more straightforward to develop a measure in
(. &) space. In that space b is the y-intercept, while @ is the angle the line makes
with the r-axis, as shown in Figure 144, Here, the differential measure de db
almost works, but it would not be fair due to the effect shown in Figure 14.1. To
account for the larger span b that a constant width bundle of lines makes, we must
add a cosine factor;

di = cos g dip dh.

It can be shown that this measure, up to a constant, is the only one that is invariant
with respect to rotation and translation,

This measure can be converied into an appropriate measure for other param-
eterizations of the line. For example, the appropriate measure for (. b) space
is

i b

dy=——+.
(14+m2)?

14.1. Integration 283

For the space of lines parameterized in (u. v) space,
ur+uvy+1=10,

the appropriate measure is

eu dr
dit = — e
[”2 + 1,2}1

For lines parameterized in terms of (a, b, the r-intercept and y-intercept, the
measure is

MNote that any of those spaces are equally valid ways to specify lines, and which is
best depends upon the circumstances. However, one might wonder whether there
exists a coordinate system where the measure of a set of lines is just an area in the
dual space. In fact, there is such a coordinate system, and it is delightfully simple;
it is the normal coordinares which specify a line in terms of the normal distance
from the origin to the line, and the angle the normal of the line makes with respect
to the r-axis (Figure 14.5), The implicit equation for such lines is

Teosf 4 ysin# — p=10.
And, indeed, the measure in that space is
dyt = dp dff,

We shall use these measures 1o choose fair random lines in a later section.,

14.1.3 Example: Measure of Lines in 3D

In 3D there are many ways to parameterize lines. Perhaps, the simplest way is
to use their intersection with a particular plane along with some specification of
their orientation. For example, we could chart the intersection with the =y plane
along with the spherical coordinates of its orientation. Thus, each line would be
specified as a (=, i, #, @) quadruple. This shows that lines in 3D are 4D entities,
i.e., they can be described as points in a 4D space.

The differential measure of a line should not vary with (x,), but bundles of
lines with equal cross section should have equal measure. Thus, a fair differential
measure is

dy = d dy sin 8 dd de,

»{157)

Figurs 14.3. The sat of
points on the ting y=mx +
bin {x ¥ space can also
be represented by a sin-
gle point in (m, b} space so
the top line and the bottom
point represent the same
geomatric antity: a 20 lina.

Figura 14.4, In angie-
intercep! space we param-
eterize the line by angie
¢ & [-=/2,7/2) rather
than slope.

¥

L
8

| X

Flgure 14.5. The normal
coordinates of a line use
the normal distance to the
origin and an angle to spec-
ify a lina,

284 14. Sampling

Another way to parameterize lines is o chart the intersection with two parallel
planes. For example, if the line intersects the plane + = 0 at (¥ = u,y = v) and
the plane = = 1 at (& = &,y = t), then the line can be described by the quadruple
{w, v, 8 1). Note, that like the previous parameterization, this one is degenerate
for lines parallel to the xy plane. The differential measure is more complicated
for this parameterization although it can be approximated as

dp = dudvadsdt,

for bundles of lines nearly parallel to the z-axis. This is the measure often implic-
itly used in image-based rendering (Chapter 25),

For sets of lines that intersect a sphere, we can use the parameterization of the
two points where the line intersects the sphere. If these are in spherical coordi-
nates, then the point can be described by the quadruple (84, ¢y, 8, o) and the
measure 15 just the differential area associated with each point:

dp = sinfy dfy deby sin B dfls des.

This implies that picking two uniform random endpoints on the sphere results in
a line with uniform density. This observation was used to compute form-factors
by Mateu Shert in his dissertation (Sbert, 1997),

Note that sometimes we want to parameterize directed lines, and sometimes
we want the order of the endpoints not to matter. This is a bookkeeping detail
that is especially important for rendering applications where the amount of light
flowing along a line is different in the two directions along the line,

14.2 Continuous Probability

Many graphics algorithms use probability to construct random samples to solve
integration and averaging problems. This is the domain of applied continuous
probability which has basic connections to measure theory,

14.2.1 One-Dimensional Continuous Probability Density Functions

Loosely speaking, a continuous random variable r is a scalar or vector
quantity that “randomly” takes on some valoe from the real line
R = (—ou,4o¢). The behavior of r is entirely described by the distribution
of values it takes. This distribution of values can be quantitatively described by

14.2. Continuous Probability 285

the prabability density function (pdf), p, associated with z (the relationship is de-
noted & ~ p). The probability that = assumes a particular value in some interval
ez, b] is given by the following integral:

fa
Pmbability{;:é[mb]}=f plz)dz. (14.1)

Loosely speaking, the probability density function p describes the relative likeli-
hood of a random variable taking a certain value; if p(x,) = 6.0 and p{z2) = 3.0,
then a random variable with density p is twice as likely to have a value “near”
than it it to have a value near s, The density p has two characteristics:

plx) = 0 (probability is non-negative), (14.2)
o
f plzjde =1 (Probability(r € B) = 1). (14.3)
-

As an example, the canonical random variable £ takes on values between zero
{inclusive) and one {non-inclusive) with uniform probability (here uniform simply
means each value for £ is equally likely). This implies that the probability density
function g for £ 1s

|1 ifo=E <],
91€) = { 0 otherwise,

The space over which £ is defined is simply the interval [0,1). The probability
that £ takes on a value in a certain interval [a, b] € [0, 1) is

b
Probability(a < £ < &) = f ldr = b—un.

14.2.2 One-Dimensional Expected Value

The average value that a real function f of a one-dimensional random variable
with underlying pdf p will take on is called its expecred value, E{ f(z)) (some-
times written E f{x)):

E(f(z)) = f Foipla)dz.

The expected value of 4 one-dimensional random variable can be calculated by
setting f(x) = x. The expected value has a surprising and useful property: the

286 14. Sampling

expected value of the sum of two random variables is the sum of the expected
values of those variables:

Elz+y) = E{z) + E(y),

for random variables « and y. Because functions of random variables are them-
selves random variables, this linearity of expectation applies to them as well:

E(f{x) + 9(y)) = E(f{x)) + E(g(y)).

An obvious question to ask is whether this property holds if the random variables
being summed are correlated (variables that are not correlated are called indepen-
dent). This linearity property in fact does hold whether or not the variables are
independent! This summation property is vital for most Monte Carlo applications.

14.2.3 Multi-Dimensional Random Variables

The discussion of random variables and their expected values extends naturally
to multi-dimensional spaces. Most graphics problems will be in such higher-
dimensional spaces. For example, many lighting problems are phrased on the
surface of the hemisphere, Fortunately, if we define a measure u on the space the
random variables occupy, everything is very similar to the one-dimensional case.
Suppose the space 5 has associated measure p; for example S is the surface of
a sphere and ;¢ measures area. We can defineapdfp : § — B and if risa
random variable with & ~ p, then the probability that = will take on a value in
some region 5; C 5 is given by the integral

Probability(z € 5;) = f plx)dye.
Here Probability (event) is the probability that evenr is true, so the integral 15 the
probability that = takes on a value in the region S|,

In graphics, S is often an area (dy = dA = drdy) or a set of directions (points
on a unit sphere: dp = dw = sin#df dg). As an example, a two-dimensional
random variable o is a uniformly distributed random variable on a disk of radius
R, Here uniformly means uniform with respect to area, e.g., the way a bad dant
player’s hits would be distributed on a dart board. Since it is uniform, we know
that p{) is some constant. From the fact that the area of the disk is 7+~ and that
the total probability is one, we can deduce that

1
pla) = —x5.

14.2. Continuous Probability 287

This means that the probability that « is in a certain subset 5y of the disk is just

- 1
Probability{a € 5;) = s T-—mdﬂ.
This is all very abstract. To actually use this information, we need the integral in
a form we can evaluate. Suppose S, is the portion of the disk closer to the center
than the perimeter. If we convert to polar coordinates, then o is represented as
a (r,¢) pair, and S, is the region where v < [/2. Note, that just because o
is uniform, it does not imply that @ or » are necessarily uniform {in fact. @ is
uniform, and + is not uniform). The differential area dA is just r dr dd. Thus,

R ol A
bility (r < — | = ——rdrdg = (.25,
Proba 1}-(:{2) fu /n —a" rdp = (0,25

The formula for expected value of a real function applies to the multi-dimensional
case:

E{f{:ar]}=LIETJF[TﬁthI~

wherer € Sand f : S+ R, and p : § + R. For example, on the unit square
S =[0,1] = [0,1] and p{, y) = 4y, the expected value of the r coordinate for

(r,y) ~pis

E(z)

[. fle y)plz, y)dA

1M

[f 4oy dr dy
o i

2

Mote that here f{x,y) = .

14.2.4 \Variance

The variance, V(x), of a one-dimensional random variable is, by definition, the
expected value of the square of the difference between & and E(x):

V(z) = E([z — E(z)]*).
Some algebraic manipulation gives the non-cbvious expression:

Vi) = B(z*) — [B(z)].

288 14, Sampling

The expression E{|z — El[a:J]i} 15 more useful for thinking intuitively about vari-
ance, while the algebraically equivalent expression E{z?) — |E{z}|2 is usually
convenient for calculations. The variance of a sum of random variables s the
sum of the variances if the variables are independent. This summation property
of variance is one of the reasons it is frequently used in analysis of probabilistic
models, The square root of the variance is called the srandard deviation, o, which
gives some indication of expected absolute deviation from the expected value,

14.2.5 Estimated Means

Many problems involve sums of independent random variables x;, where the van-
ables share a common density p. Such variables are said to be independent identi-
cally distributed (iid) random variables, When the sum is divided by the number
of variables, we get an estimate of E{x):

i N
E{x)= N ZI,-.
i=]

As N increases, the variance of this estimate decreases. We want [V to be large
enough so that we have confidence that the estimate is “close enough.” However,
there are no sure things in Monte Carlo; we just gain statistical confidence that
our estimate is good. To be sure, we would have to have N = oc. This confidence
is expressed by the Law of Large Numbers:

Probability | £(z) = lim_ EZI, =

14.3 Monte Carlo Integration

In this section, the basic Monte Carlo solution methods for definite integrals are.
outlined, These techniques are then straightforwardly applied to certain integral
problems. All of the basic material of this section is also covered in several of the
classic Monte Carlo texts. (See the Notes section at the end of this chapter.)

As discussed earlier, given a function f : 5§ — R and a random variable
& ~ p, we can approximate the expected value of f{z) by a sum:

1 N
BU@) = [femads 53 1@, (144
- t g

14.3. Monte Carlo Integration 289

Because the expected value can be expressed as an integral, the integral is also
approximated by the sum. The form of Equation 14.4 is a bit awkward; we would
usually like to approximate an integral of a single function g rather than a product
fp. We can accomplish this by substituting g = fp as the integrand:

i14.5)

For this formula to be valid, p must be positive when g 15 nonzero.

So to get a good estimate, we want as many samples as possible, and we want
the g/p to have a low variance (g and p should have a similar shape). Choosing
p intelligently is called importance sampling, because if p is large where g is
large, there will be more samples in important regions. Equation 14.4 also shows
the fundamental problem with Monte Carlo integration: diminishing rerurn. Be-
cause the variance of the estimate is proportional to 1/N, the standard deviation
is proportional to 1/+/N. Since the error in the estimate behaves similarly to the
standard deviation, we will need to quadruple N to halve the error,

Another way to reduce variance is to partition 5, the domain of the integral,
into several smaller domains 5;, and evaluate the integral as a sum of integrals
over the 5;. This is called strarified sampling, the technique that jittering employs
in pixel sampling (Chapter 10). Normally only one sample is taken in each 5;
{with density), and in this case the variance of the estimate is:

N
gli) (glx:))
var ; i14.6)
(pilz;)) ; pilzi)
It can be shown that the variance of stratified sampling is never higher than un-
stratified if all strata have equal measure:

T
./;1 pla)dp = v j; pla)di.

The most common example of stratified sampling in graphics is jittering for pixel
sampling as discussed in Section 10.11.

As an example of the Monte Carlo solution of an integral 1, set g() equal to
& over the interval (0, 4):

4
f=f rdr = 8. (14.7)
i

The impact of the shape of the function p on the variance of the N sample esti-
mates is shown in Table 14.]. Note that the variance is reduced when the shape
of p is similar to the shape of g. The variance drops to zero if p = g/1, but

290 14. Sampling

Method Sampling function | Variance Samples needed for
standard error of U.008

importance (6—x)/(16) 5G.ENTT 887,500

importance 1/4 21.3N71 332,812

importance (x+2)/16 64N 8,437

importance /8 1] 1

stratified 14 213873 70

Table 14.1. Variance for Monte Carlo estimate of [\ = .

{15 not usually known or we would not have o resort 1o Monte Carlo. One im-
portant principle illustrated in Table 14.1 is that stratified sampling is often far
superior o importance sampling (Mitchell, 1996). Although the variance for this
stratification on [is inversely proportional to the cube of the number of samples,
there is no general result for the behavior of variance under stratification. There
are some functions for which stratification does no good. One example is a white
noise function, where the variance is constant for all regions. On the other hand,
most functions will benefit from stratified sampling, because the variance in each
subcell will usually be smaller than the variance of the entire domain,

14.3.1 Quasi-Monte Carlo Integration

A popular method for quadrature is to replace the random points in Monte Carlo
integration with guasi-random points. Such points are deterministic, but are in
some sense uniform. For example, on the unit square [0, 1]%, a set of N quasi-
random points should have the following property on a region of area A4 within
the sguare:

number of points in the region = AN,

For example, a set of regular samples in a lattice has this property.

Quasi-random points can improve performance in many integration applica-
tions. Sometimes care must be taken o make sure that they do not introduce
aliasing. It 1= especially nice that, in any application where calls are made to ran-
dom or stratified points in [0, 1], one can substitute d-dimensional quasi-random
points with no other changes.

The key intuition motivating quasi-Monte Carlo integration is that when es-
timating the average value of an integrand, any set of sample points will do, pro-
vided they are “fair”

14.4. Choosing Random Points 231

14.4 Choosing Random Points

We often want to generate sets of random or pseudorandom points on the unit
square for applications such as distribution ray tracing. There are several methods
for doing this, e.g., jittering (see Section 10.11). These methods give us a set of
N reasonably equidistributed points on the unit square [0, 1]* : {uy, v,) through
(tn,).

Sometimes, our sampling space may not be square (e.g., a circular lens), or
may not be uniform {e.g, a filter function centered on a pixel). It would be nice 1f
we could write a mathematical transformation that would take our equidistributed
points (u;, v;) as input and output a set of points in our desired sampling space
with our desired density. For example, to sample a camera lens, the transformation
would take {w;, v;) and output [ry, ¢) such that the new points are approximately
equidistributed on the disk of the lens. While we might be tempted to use the
transform

I:ll:ll = Efr“l_
Ti= l‘,‘R.

it has a serious problem. While the points do cover the lens, they do s0 non-
uniformly (Figure 14.6). What we need in this case 1% a transformation that takes
equal-area regions to equal-arca regions—one that takes uniform sampling distri-
butions on the square to uniform distributions on the new domain.

There are several ways to generate such non-uniform points or uniform points
on non-rectangular domains, and the following sections review the three most
often used: function inversion, rejection. and Metropolis.

14.4.1 Function Inversion

If the density f(r) is one-dimensional and defined over the interval = € [0, Tac).

then we can generate random numbers o, that have density [from a set of uni-
form random numbers £, where £ £ [0.1]. To do this, we need the cumulative
probability distribution function P{r):

@
Probability(ry <) = P{ir) =f Fla"Vdp.

mien

To get o, we simply transform £,

oy =P J[._f,_ﬁ.

Figure 14.6. The trans-
farm that takes the horizon-
tal and vertical dimansions
uniformly to {r, o) doas not
preserve relative area; not
all of the resulting areas dre
the same:

202 14, Sampling

where P~ is the inverse of P. If P is not analytically invertible, then numerical
methods will suffice, because an inverse exists for all valid probability distribution
functions.

Note that analytically inverting a function is more confusing than it should be
due to notation. For example, if we have the function

y=u°,
for r = (), then the inverse function is expressed in terms of y as a function of :

=i

When the function is analytically invertible, it is almost always that simple. How-
ever, things are a little more opagque with the standard notation:

flz) = =%,
£ @) = V.
Here i is just a dummy variable. You may find it easier to use the less standard
notation:

y=a*,

T = /Y,
while keeping in mind that these are inverse functions of each other.
For example, to choose random points 2, that have density

2

dx
plz) = ==
on |1, 1], we see that
2 +1
Plz)= :
(&) =15

and

P~Y(z) = V2 -1,

s0 we can “warp” a set of canonical random numbers (£;,- -+ ;£] to the properly
distributed numbers

(21,5 on) = (V26 =1, , {260 - 1).

Of course, this same warping function can be used to transform "uniform™ jittered
samples into nicely distributed samples with the desired density.

14.4. Choosing Random Points 293

If we have a random variable o = (o, a-y} with two-dimensional density
(z,y) defined on [Timin, Tmar] X [¥min, Ymaz |, then we need the two-dimensional
distribution function:

Probability(oy, < xand oy < y) = F(z,y) = f flz', o duiz').
Wman ¥ Tmin

We first choose an x; using the marginal distribution F(, Ymae) and then choose
y: according to Flzi,)/ Flxi, Ymaz). If flz,) is separable (expressible as
glz)h{y]), then the one-dimensional technigues can be used on each dimension.

Returning to our earlier example, suppose we are sampling uniformly from
the disk of radius &, so p(r,¢) = 1/(rR*). The two-dimensional distribution
function is

-) LT pedid e
Probability(r < vy and ¢ < ¢g) = Flrg, do) = .[u [U Ff} = Ef-r?
This means that a canonical pair (£, £2) can be transformed to a uniform random

point on the disk:

qb——-ﬂ:rr{.,
T=R1~/E.

This mapping is shown in Figure 14.7.
To choose reflected ray directions for some realistic rendering applications,
we choose points on the unit hemisphere according to the density:

n+1

T cos™ 8,

ple,¢) =

Where n 15 a Phong-like exponent, # is the angle from the surface normal and ¢ <
[0, 7 /2] (is on the upper hemisphere) and ¢ is the azimuthal angle (¢ € [0. 2x]).
The cumulative distribution function is

@ b
P(8.0) =f f p(' ¢') sin @'df'de’. (14.8)
o Jo
The sinéd" lerm arises because, on the sphere, dw = cosddBdd. When the

marginal densities are found, p (as expected) is separable, and we find that a
£y, E2) pair of canonical random numbers can be transformed to a direction by

= arceos ((1 —E;]ﬁ).
¢ = 2mfs.

Figure 14.7. A map-
ping that takes egual area
regions in the unit square
1o equal area regions in the
disk.

294 14, Sampling

Again, a nice thing about this is that a set of jittered points on the unit square can
be easily transformed to a set of jittered points on the hemisphere with the desired
distribution. Note that if n is set to 1, we have a diffuse distribution, as is often
needed,

Often we must map the point on the sphere into an appropriate direction with
respect Lo a wvw basis, To do this, we can first convert the angles to a unit vector 4

a= (cosdsind, sindsind, cosf)

As an efficiency improvement, we can avoid taking trigonometric functions of
inverse trigonometric functions (e.g., cos (arceos #)). For example, when n = 1
{a diffuse distribution}, the vector a simplifies to

a= (ms (27€1)1/ E2. sin (27€:) /E2. /1 —-E-'g)

14.4.2 Rejection

A rejection method chooses points according to some simple distribution and re-
jects some of them that are in a more complex distribution. There are several
scenarios where rejection is used, and we show some of these by example.

Suppose we want uniform random points within the unit circle. We can first
choose uniform random points (x, y) € [~1, 1]? and reject those outside the cir-
cle. If the function () returns a canonical random number, then the procedure
15:

done = false
while [not done) do
r=—1+2r)
y=—1+2r()
if (z2 +y* < 1) then
done = true
If we want a random number » ~ p and we know that p : [a.b] — R, and
that for all =, p(x) < wm, then we can generate random points in the rectangle
i, b] = |0, m] and take those where y < p(x):

done = false

while (not done) do
r=a+r(}b—a)
y=r{)m

if [y < plz)) then
done = true

14.4. Choosing Random Points 295

This same idea can be applied to take random points on the surface of a sphere.
To pick a random unit vector with uniform directional distribution, we first pick a
random point in the unit sphere and then treat that point as a direction vector by
taking the unit vector in the same direction:

done = false
while (not done) do
r=—1+2r)
y=—142r()
z=—142r{)
if{(l=+/22+y*+2%) < 1) then
done = true
z=uxfl
y=y/l
g=zfl

Although the rejection method is usually simple to code, it is rarely compatible
with stratification. For this reason, it tends to converge more slowly and should
thus be used mainly for debugging, or in particularly difficult circumstances.

14.4.3 Metropolis

The Merropolis method uses random murarions 1o produce a set of samples with
i desired density. This concept is used extensively in the Metropolis Light Trans-
part algorithm referenced in the chapter notes. Suppose we have a random point
ay in a domain 5, Further, suppose for any point x, we have a way [0 generate
random y ~ p.. We use the marginal notation p.(y) = ple — y) to denote this
density function. Now, suppose we let vy be a random point in 5 selected with
underlying density plxy — 1). We generate 1y with density p(xy — xy) and s0
on. In the limit, where we generate an infinite number of samples, it can be proved
that the samples will have some underlying density determined by p regardless of
the initial point .

Now, suppose we want to choose p such that the underlying density of samples
to which we converge is proportional to a function f{x) where [is a non-negative
function with domain 5. Further, suppose we can evaluate f, but we have little
or no additional knowledge about its properties (such functions are commeon in
graphics), Also, suppose we have the ability to make “transitions” from x; to
241 with underlying density function t{x; — &,). To add flexibility, further
suppose we add the potentially non-zero probability that x; transitions to itself,

296 14, Sampling

i.e., ;11 = x;. We phrase this as generating a potential candidate y ~ #(z; — y)
and “accepting” this candidate (i.e., x,4; = y) with probability a{z; — y) and re-
jecting it (i.e., @y = @) with probability 1 —alz; — y). Note that the sequence
Ty Ty, T2 - will be a random set, but there will be some correlation among sam-
ples. They will still be suitable for Monte Carlo integration or density estimation,
but analyzing the variance of those estimates is much more challenging.

Now, suppose we are given a transition function #{r — y) and a function f(r)
of which we want to mimic the distribution, can we use a(y — =) such that the
points are distributed in the shape of f7 Or more precisely,

{zg,x1,T2,...} ~ %

It turns out this can be forced by making sure the x; are starionary in some strong
sense. If you visualize a huge collection of sample points &, you want the “flow"”
between two points to be the same in each direction. If we assume the density of
points near = and y are proportional to f{x) and f(y). respectively. then the flow
in the two directions should be the same:

fow(z — y) = kf{z)t(z — ylalz — y),
flow(y — x) = kf(y)t(y — z)a(y —).

where | is some positive constant. Setting these two flows constant gives a con-

strainl on e;
aly —x) _ flz)t{z — y)

ale —y) — fMy — =)
Thus, if either a(y — =) or a{x — y) is known, 5o is the other. Making them
larger improves the chance of acceptance, so the usval technique is to set the
larger of the two 1o 1.

A difficulty in using the Metropolis sample generation technique is that it is
hard to estimate how many points are needed before the set of points is “good.”
Things are accelerated if the first n points are discarded, although choosing n
wisely is non-trivial.

14.4.4 Example: Choosing Random Lines in the Square

As an example of the full process of designing a sampling strategy, consider the
problem of finding random lines that intersect the unit square [0, 1%, We want
this process to be fair; that is, we would like the lines to be uniformly distributed
within the square. Intuitively, we can see that there is some subtlety to this prob-
lem; there are “more” lines at an obligue angle than in horizontal or vertical di-
rections, This is because the cross section of the square is not uniform.

14.4. Choosing Random Points 297

Cur first goal 15 1o find a function-inversion method, if one exists, and then 1o
fall back on rejection or Metropolis if that fails. This is because we would like
to have stratified samples in line space. We try using normal coordinates first,
because the problem of choosing random lines in the square is just the problem
of finding uniform random points in whatever part of {r, #} space corresponds 1o
lines in the sguare.

Consider the region where —7/2 < # <). What values of correspond to
lines that hit the square? For those angles, » < cos# are all the lines that hit
the square as shown in Figure 14.8. Similar reasoning in the other four quadrants
finds the region in (r, #) space that must be sampled. as shown in Figure 14.9,
The equation of the boundary of that region ryp. (#)is

] ifd € [-7,—E],

3] if . [—Z.01,

T (0) = S . l | 2%
cos +sind if 6 € [0, 51,
sin # ifg e |5, m:

Because the region under vy, (#) is a simple function bounded below by r = 0,
we can sample it by first choosing # according to the density function:

P (&)

pld) = ——rjn o (H}rjf.i'

The denominator here is 4. Now, we can compute the cumulative probability
distribution function;

] if @ € [—m,— %},
P(6) = 1+ s?n #)/4 if# € [-Z.0]
(2+sinf —costl) /4 if0 €0],
(3 — cosfl) /4 if € [Z,x].
pr =Cosbising
r=cost r=sing
8
] w2 f

Figure 14.9. The maximum radius for lines hitting the unit square [0,1]° as a function of 4,

/ X

Figure 14.8. The largest
distance r corresponds 1o a
lina hitting the square for
e[—rf20| Becausa
the sguare has sidelength
ona, = cos .

]

298 14. Sampling

‘We can invert this by manipulating £, = P(#) into the form # = g(£,). This
yields

arcsin(4, — 1) if& < 4,
= q (arcsin ((46: — 2)%)) /2 if& €[5,),
arccos(3 — 48) if& > 3.

Once we have #, then r 1s simply:
= Ealma(#).

As discussed earlier, there are many parameterizations of the line, and each has an
associated “fair” measure. We can generate random lines in any of these spaces
as well. For example, in slope-intercept space, the region that hits the square is
shown in Figure 14.10), By similar reasoning to the normal space, the density
function for the slope is

_ 14+ |m|
plm) =—
with respect to the differential measure
diss i :
(1 4 me?)

Figure 14.10. The region of (m b} space that containg lines that intersect the unit square
(0,11

14.4. Choosing Random Points 299
This gives rise to the cumulative distribution function:
- ﬁ;—'nﬁ ifm <0,

P —
{THZ]' { + : .r.l:I:-"r i.f 1y 2 (b

These can be inverted by solving two quadratic equations. Given an m generated
using £;, we then have

— e

_Jem+2Am+ 1) €< 3
(1 —m)(28 —1) otherwise.
This is not a better way than using normal coordinates; it is just an alternative
way.

Frequently Asked Questions

s This chapter discussed probability but not statistics, What is the
distinction?

Probability is the study of how likely an event is. Statistics infers characteristics
of large, but finite, populations of random variables. In that sense, statistics could
be viewed as a specific type of applied probability.

s |s Metropolis sampling the same as the Metropolis Light Transport
Algorithm?

No. The Meropolis Light Transport (Veach & Guibas, 1997) algorithm uses
Metropolis sampling as part of its procedure, but it is specifically for rendering,
and it has other steps as well.

Notes

The classic reference for geometric probability is Geametric Probability (Solomon,
[978). Another method for picking random edges in a square is given in Random-
Edge Discrepancy of Supersampling Patterny (Dobkin & Mitchell, 1993). More
information on quasi-Monte Carlo methods for graphics can be found in Efficien:
Multidimensional Sampling (Kollig & Keller, 2002). Three classic and very read-
able books on Monte Carlo methods are Mante Carlo Methods (Hammersley &
Handscomb, 1964), Maonte Carfo Methods, Basics (Kalos & Whitlock, 1986). and
The Monte Carle Method (Sobel, Stone, & Messer, 1975),

300

14. Sampling

Exercises

L.

What is the average value of the function xy= in the unit cube (x, 5, z) €
[0, 1]%?

. What is the average value of r on the unit-radius disk: (r.¢) € [0,1] =

[0, 2)?

. Show that the uniform mapping of canonical random points (£, ;) to the

barycentric coordinates of any triangle is: @ = 1 — T—&;, and v =
(1 —u)a.

. What is the average length of a line inside the unit square? Verify your

apswer by generating ten million random lines in the unit square and aver-
aging their lengths.

. What is the average length of a line inside the unit cube? Verify your answer

by generating ten million random lines in the unit cube and averaging their

lengths.

. Show from the definition of variance that V(z) = E(x?) — [E(x)]*.

Michael Gleicher

15

Curves

15.1 Curves

Intuitively, think of a curve as something you can draw with a pen, The curve is
the set of points that the pen traces over an interval of time. While we usually
think of a pen writing on paper (e.g., a curve that is in a 2} space), the pen could
move in 3D to generate a space curve, or you could imagine the pen moving in
some other Kind of space,

Mathematically, definitions of curve can be seen in at least two ways:

1. The continuous image of some interval in an n-dimensional space.

2. A continuous map from a one-dimensional space
to an n-dimensional space.

Both of these definitions start with the idea of an interval range (the ume over
which the pen traces the curve), However, there is a significant difference; in
the first definition, the curve is the set of points the pen traces (the image), while
in the second definition, the curve is the mapping between time and that set of
poinis. For this chapter, we use the first definition.

A curve is an infinitely large set of points. The points in a curve have the
property that any point has two neighbors, except for a small number of points
that have one neighbor (these are the endpoints). Some curves have no endpoints,
either because they are infinite (like a line) or they are closed (loop around and
connect Lo themselves).

301

302 15. Curves

Because the “pen” of the curve is thin (infinitesimally), it is difficult to create
filled regions, While space-filling curves are possible (by having them fold over
themselves infinitely many times), we do not consider such mathematical oddities
here. Generally, we think of curves as the outlines of things, not the “insides”

The problem that we need to address is how to specify a curve—to give a
name or representation to a curve so that we can represent it on a computer. For
some curves, the problem of naming them is easy since they have known shapes:
line segments, circles, elliptical arcs, etc. A general curve that does not have a
“named” shape is sometimes called a free-form curve. Because a free-form curve
can take on just about any shape, they are much harder to specify,

There are three main ways to specify curves mathematically:

Implicit curve representations define the set of points on a curve by giving a
procedure that can test to see if a point in on the curve. Usually, an implicit
curve representation is defined by an implicir function of the form

fx.y)=0,

50 that the curve is the set of points for which this equation is true. Note that
the implicit function f is a scalar function (it returns a single real number},

Parametric curve representations provide a mapping from a free parameier to
the set of points on the curve. That is, this free parameter provides an index
to the points on the curve. The parametric form of a curve is a function that
assigns positions to values of the free parameter, Intuitively, if you think of
a curve as something you can draw with a pen on a piece of paper, the free
parameter is time, ranging over the interval from the time that we began
drawing the curve to the time that we finish. The paramerric function of
this curve tells us where the pen is at any instant in time:

() = £(t).

Note that the parametric function is a vector-valued function. This example
is a 2D curve, so the output of the function is a 2-vector; in 3D it would be
a 3-vector.

Generative or procedural curve representations provide procedures that can gen-
erate the points on the curve that do not fall into the first two categories, Ex-
amples of generative curve descriptions include subdivision schemes and
fractals.

Remember that a curve is a set of points. These representations give us ways
w specify those sets. Any curve has many possible representations. For this

15.1. Curves 303

reason, mathematicians typically are careful to distinguish between a curve and
its representations, In computer graphics we are often sloppy, since we usually
only refer to the representation, not the actual curve itself. So when someone says
“an implicit curve,” they are either referring to the curve that is represented by
some implicit function or to the implicit function that is one of the representations
of some curve.. Such distinctions are not usually important, unless we need to
consider different representations of the same curve. We will consider different
curve representations in this chapter, so we will be more careful. When we use a
term like “polynomial curve,” we will mean the curve that can be represented by
the polynomial.

By the definition given at the beginning of the chapter, for something to be a
curve it must have a parametric representation. However, many curves have other
representations. For example, a circle in 2D with its eenter at the origin and radivs
equal to | can be written in implicit form as

flr,y)=z"+p*-1=0,
or in parametric form as
{#,4) = E(t) = (cost,sint), e [0.27),

The parametric form need not be the most convenient representation for a given
curve, Tn fact, it is possible to have curves with simple implicit or generative
representations for which it is difficult to find a parametric representation,

Different representations of curves have advantages and disadvantages. For
example, parametric curves are much easier (o draw, because we can sample the
free parameter. Generally, parametric forms are the most commaonly used in com-
puter graphics since they are easier to work with, Our focus will be on parametric
representations of curves.

15.1.1 Parameterizations and Re-Parameterizations

A parametric curve refers 1o the curve that is given by a specific parametric func-
tion over some particular interval. To be more precise, a parametric curve has a
given function that is a mapping {rom an interval of the parameters. It is often
convenient to have the parameter run over the unit interval from 00 o 1. When the
free parameter varies over the unit interval, we often denote the parameter as .
If we view the parametric curve to be a line drawn with a pen, we can consider
1 = [J as the time when the pen is first set down on the paper and the unit of time
to be the amount of time it takes to draw the curve (1 = 1 is the end of the curve),

304 15. Curves

The curve can be specified by a function that maps time (in these unit coordinates)
to positions. Basically, the specification of the curve is a function that can answer
the question, “Where is the pen at time u?”

If we are given a function () that specifies a curve over interval [a, b], we
can easily define a new function £ 1) that specifies the same curve over the unit
interval. We can first define

glu) = a+(b—a)u,

and then
fa(u) = £glu)).

The two functions, f and f2 both represent the same curve: however. they pro-
vide different paramererizations of the curve. The process of creating a new pa-
rameterization for an existing curve is called re-paramererizarion, and the map-
ping from old parameters to the new ones (g, in this example) is called the re-
parameterization function,

If we have defined a curve by some parameterization, infinitely many oth-
ers exist (hecause we can always re-paramelerize). Being able to have multiple
parameterizations of a curve is useful, becauvse it allows us to create parameteriza-
tions that are convenient. However, it can also be problematic, because it makes
it difficult to compare two functions to see if they represent the same curve.

The essence of this problem is more general: the existence of the free parame-
ter (or the element of time) adds an invisible, potentially unknown element to our
representation of the curves, When we look at the curve after it is drawn, we don't
necessarily know the timing. The pen might have moved at a constant speed over
the entire time interval, or it might have started slowly and sped up. For example,
while u = 0.5 is halfway through the parameter space, it may not be half-way
along the curve if the motion of the pen starts slowly and speeds up at the end.
Consider the following representations of a very simple curve:

(.y) =flu)= (u,u)
(r.3) =flu)= (u2 u?),
(r,) =Fflu)= (@° u®.

All three functions represent the same curve on the unit interval; however when
wis not 0 or 1, f{u) refers to a different point depending on the representation of
the curve.

If we are given a parameterization of a curve, we can use it directly as our
specification of the curve, or we can develop a more convenient parameterization.
Usually, the nafural parameterization is created in a way that is convenient (or

15.1. Curves 305

natural) for specifying the curve, so we don't have to know about how the speed
changes along the curve.

If we know that the pen moves at a constant velocity, then the values of the
free parameters have more meaning, Halfway through parameter space is halfway
along the curve. Rather than measuring time, the parameter can be thought to
measure length along the curve. Such parameterizations are called arc-length
parameterizations because they define curves by functions that map from the dis-
tance along the curve (known as the arc length) 1o positions. We often use the
variable 5 to denote an arc length parameter.

Technically, a parameterization is an arc-length parameterization if the mag-
nitude of its rangens (that is, the derivative of the parameterization with respect to
the parameter) has constant magnitude. Expressed as an equation,

df(s)|*
— =

Computing the length along a curve can be tricky. In general, it is defined by
the integral of the magnitude of the derivative (intuitively, the magnitude of the
derivative is the velocity of the pen as it moves along the curve). So, given a value
for the parameter v, you can compute s (the arc-length distance along the curve
from the point £{0) to the point f{v)) as

=

where f{1) is a function that defines the curve with a natural parameterization.
Using the arc-length parameterization requires being able to solve Equation
15.1 for t, given 5. For many of the kinds of curves we examine, it cannot be done
in a closed-form (simple) manner and must be done numerically.
Generally, we use the variable u to denote free parameters that range over the
unit interval, s to denote arc-length free parameters, and ¢ to represent paramelers
that aren’t one of the other two,

5 (15.1}

15.1.2 Piecewise Parametric Representations

For some curves, defining a parametric function that represents their shape is easy.
For example, lines, circles, and ellipses all have simple functions that define the
points they contain in terms of a parameter. For many curves, finding a function
that specifies their shape can be hard. The main strategy that we use to create com-
plex curves is divide-and-conquer: we break the curve into a number of simpler
smaller pieces, each of which has a simple description.

306 15. Curves

Bk

Figure 15.1. (a) A curve that can be easily represented as two lines; (b) a curve that can
be easily reprasented as a line and a circular arg; (¢} a curve approximating curve (b)) with
five line segments

For example, consider the curves in Figure 15.1. The first two curves are
easily specified in terms of two pieces. In the case of the curve in Figure 15.1(b),
we need two different Kinds of pieces: a line segment and a circle.

To create a parametric representation of a compound curve (like the curve
in Figure 15.1(b}), we need to have our parametric function switch between the
functions that represent the pieces. If we define our parametric functions over the
range (1 < n < 1, then the curve in Figures 15.1(a) or (b) might be defined as

e(a) = {n{h} if u < 0.5,

15.2
fa(2u — 1) if u > 0.5, (5

where f; is a parameterization of the first piece, fz is a parameterization of the
second piece, and both of these functions are defined over the unit interval.

We need to be careful in defining the functions f; and £ to make sure that the
pieces of the curve fit together. If f1(1) # £2(0), then our curve pieces will not
connect and will not form a single continuous curve.

To represent the curve in Figure 15.1{b}, we needed to use two different types
of pieces: a line segment and a circular arc. For simplicity's sake, we may prefer
to use a single type of piece. If we try to represent the curve in Figure 15.1(b)
with only one type of piece (line segments), we cannot exactly recreate the curve
{unless we vse an infinite number of pieces). While the new curve made of line
segments (as in Figure 15.1{c}) may not be exactly the same shape as in Fig-
ure 15.1(b), it might be close enough for our use. In such a case, we might prefer
the simplicity of using the simpler line segment pieces to having a curve that more
accurately represents the shape.

Also, notice that as we use an increasing number of pieces, we can get a better
approximation. In the limit (using an infinite number of pieces), we can exactly
represent the original shape.

152, Curve Proparties anry

One udvantage 1o wiing a piecewise representation is that it allows vs to make
d fradeolt between

1. how well our represented curve approximates the real shupe we dra trving
to represent,

2. how complicated the pieces that we use are;
3 how many pEces we use.

So, if we are trying (o represent a complicated shape, we might decide that a
crude approxiination is acceptable and use a small pumbear of simple pleces. To
improve Lhe approgitmation, we can choose hetween wsing mare pieces and using
mure complicated pieces.

In computer graphics practice, we temd w preler using relatively simple corve
pieces [@ither line scgmenls, urey, or polynomial segments}.

15.1.3 Splines

Before computers, when draftsmen wuated 1o desw g stooth caeve, one tool they
employed was a s piece of metal thar they would bend inee the desired shape
lor lracing. Becuuse the metal would bend, not fold, it would have a smaoth
shape. The seiffoess meant that the metal would bend as little as possible (o make
the desired shape. This sGff picce of melal was called a spline,

Mathemalicians found that they could represent the curves creabed by a dradt-
man's splime with piecewise polynomial Functions. Initially, they uscd the term
spline to reun o snooth, plecewise polynomial Minction. Moe recently, the lerm
spling has been used tw describe any piecewise polvnomial functton, We prefer
this latrer definition,

Fur us, it spling 1% a piccewise podynomial {unetion. Such lunctions are very
useful v representing curves.

15.2 GCurve Properties

To describe a curve, we need to give some facts about its properties. Far “named”
curves. the propermies are usually specific according o the type of curve. For
example, fo describe a circle, we might provide its radrus and the positon of s
center. For an ellipse, we meght also provide the orientation of its major axis and
the ratier of the Yanplhs of the axes. For free-form curves however, we need to
huve a more general sef of propenties b deserbe individoal corves,

(M

308 15. Curves

Some properties of curves are atiributed to only a single location on the curve,
while other properties require knowlédge of the whole curve. For an intuition of
the difference, imagine that the curve is a train track. If you are standing on the
track on & foggy day you can tell that the track is straight or curved and whether
or not you are at an end point. These are local properties. You cannot tell whether
or not the track is a closed curve, or crosses itself, or how long it is. We call this
type of property, a global property.

The study of local properties of geometric objects (curves and surfaces) is
known as differential geametry. Technically, to be a differential property, there
are some mathematical restrictions about the properties (roughly speaking, in the
train-track analogy, you would not be able to have a GPS or a compass). Rather
than worry about this distinction, we will use the term local property rather than
differential property.

Local properties are impertant tools for describing curves because they do not
require knowledge about the whole curve. Local properties include

s continuity,

position at a specific place on the curve,
o direction at a specific place on the curve,
e curvature (and other derivatives).

Often, we want to specify that a curve includes a particular point. A curve is
said to interpolate a point if that point is part of the curve. A function [interpo-
lates a value v if there is some value of the parameter u for which f(t) = v. We
call the place of interpolation, that is the value of ¢, the sife.

15.2.1 Continuity

1t will be very important (o understand the local properties of a curve where two
parametric pieces come together. If a curve is defined using an equation like
Equation 15.2, then we need to be careful about how the pieces are defined. If
£i(1) # £2(0), then the curve will be “broken™—we would not be able to draw
the curve in a continuous stroke of a pen. We call the condition that the curve
pieces fit together continuity conditions because if they hold, the curve can be
drawn as a continuous piece. Because our definition of "curve™ at the beginning
of the chapter requires a curve (o be continuous, technically a "broken curve™ is
ol 4 curve,

15.2. Curve Properties 309

In addition to the positions, we can also check that the derivatives of the pieces
match correctly, If £{{1) # £5{0), then the combined curve will have an abrupt
change in its first derivative at the switching point; the first derivative will no
be continuous. In general, we say that a curve is €' continueus if all of its
derivatives up to n maich across pieces. We denote the position itself as the
zeroth derivative, so that the (" continuity condition means that the positions
of the curve are continuous, and C'' continuity means thal positions and
first derivatives are continuous. The definition of curve requires the curve w
be OV,

An illustration of some continuity conditions is shown in Figure 15.2. A dis-
continuity in the first derivative (the curve is C' but not C'') is usually noticeable
because it displays a sharp comer. A discontinuity in the second derivative is
sometimes visually noticeable, Discontinuities in higher derivatives might mat-
ter, depending on the application. For example, if the curve represents a motion,
an abrupt change in the second derivative is noticeable, so third derivative con-
tinuity is often useful. If the curve is going to have a fluid Aowing over it (for
example, it it is the shape for an airplane wing or boat hull}, a discontinuity in the
fourth or fifth derivative might cause turbulence,

The type of continuity we have just introduced (C™") is commonly referred to
as parametric continuiry as it depends on the parameterization of the two curve
pieces, If the “speed” of each piece is different, then they will not be continuous,
For cases where we care about the shape of the curve, and not its parameteriza-
tion, we define geometric continuity that requires that the derivatives of the curve
pieces match when the curves are parameierized equivalently (for example, us-
ing an arc-length parameterization). Intitively, this means that the corresponding

%, oo
| b

| | |
| | '
l c! 1 GI
\ "h_._._.__._j l\--._. ‘) |
\ \
H'R & \ ¢
S o, S

Figure 15.2. Anillustration of various types of continuity between two curve sagments.

310 15. Curves

derivatives must have the same direction, even if they have different magnitudes,
So, if the C'" continuity condition is

fi(1) = £;(0),
the G continuity condition would be
fi(1) = k £2(0),

for some value of scalar k. Generally, geometric continuity is less restrictive
than parametric continuity. A C™ curve is also G except when the parametric
derivatives vanish,

15.3 Polynomial Pieces

The most widely used representations of curves in computer graphics is done
by piecing together basic elements that are defined by polynomials and called
polynomial pieces. For example, a line element is given by a linear polynomial.
In Section 15.3.1, we give a formal definition and explain how to put pieces of
polynomial together.

15.3.1 Polynomial Notation

Polynomials are functions of the form
f(t) = ap + ajt + ast® + ... +aut™. (15.3)
The a; are called the coefficients. and n is called the degree of the polynomial if
iy 7 0. We also write Equation 15.3 in the form
HOEDPE Y (15.4)
i=i)

‘We call this the canonical form of the polynomial.
We can generalize the canonical form to

m
f(t) = cibi(t), (15.5)
i=0
where B;(t) is a polynomial. We can choose these polynomials in a convenient

form for different applications, and we call them basis functions or blending func-
tions (see Section 15.3.5). In Equation 15.4, the #* are the b;(t) of Equation 15.5,

F—".

15.3. Polynomial Pieces 31

If the set of basis functions is chosen correctly, any polynomial of degree n + 1
can be represented by an appropriate choice of ¢,

The canonical form does not always have convenient coefficients, For prac-
tical purposes, throughout this chapter, we will find sets of basis functions such
that the coefficients are convenient ways to control the curves represented by the
polynomial functions.

To specify a curve embedded in two dimensions, one can either specify two
polynomials in {: one for how x varies with ¢ and one for how y varies with #:
or specify a single polynomial where each of the a; is a 2D point. An analogous
situation exists for any curve in an n-dimensional space.

15.3.2 A Line Segment

To introduce the concepts of piecewise polynomial curve representations, we will
discuss line segments. In practice, line segments are so simple that the mathemat-
ical derivations will seem excessive. However, by understanding this simple case,
things will be easier when we move on to more complicated polynomials,

Consider a line segment thal connects point py to py. We could write the
parametric function over the unit domain for this line segment as

flu) = (1 — u)pg + upy. i15.6)

By writing this in vector form, we have hidden the dimensionality of the points
and the fact that we are dealing with each dimension separately, For example,
were we working in 2D, we could have created separate equations;

Felu) = (1 —u)zg + ury,
Syluw) = (1 —n)yp + ups.

The line that we specify is determined by the two end points, but from now
on we will stick to vector notation since it is cleaner. We will call the vector of
control parameters, p, the conrrol paints, and each element of p. a control point,

While describing a line segment by the positions of its endpoints is obyious
and usually convenient, there are other ways to describe a line segment. For
example,

1. the position of the center of the line segment, the orientation, and the length;

2. the position of one endpoint and the position of the second point relative 1o
the first;

2 15. Curves

3. the position of the middle of the line segment and one endpoint,

It is obvious that given one kind of a description of a line segment, we can switch
tor another one.

A different way to describe a line segment is using the canonical form of the
polynomial (as discussed in Section 15.3.1),

flu) = ag + uay. (157

Any line segment can be represented either by specifying ay and a; or the end-
points (py and py). [t is wsually more convenient to specify the endpoints, because
we can compute the other parameters from the endpoints.

To write the canonical form as a vector expression, we define a vector u that
is a vector of the powers of w:

u=[luu’u? ... "],
so that Equation 15.4 can be written as
flu)=u a {15.8)

This vector notation will make transforming between different forms of the curve
easier.

Equation 15.8 describes a curve segment by the set of polynomial coefficients
for the simple form of the polynomial. We call such a representation the canonical
form. We will denote the parameters of the canonical form by a.

While it is mathematically simple, the canonical form is not always the most
convenient way to specify curves. For example, we might prefer to specify a
line segment by the positions of its endpoints. If we want to define py 1o be the
beginning of the segment (where the segment is when u = 1) and p; to be the
end of the line segment (where the line segment is at u = 1), we can wrile

po =f(0) =[10] [agai],
159
i =f(1) =[11]-[agay]. e
We can solve these equations for ay and a,:
a = Puo
a = P — Po.

Matrix Form for Polynomials

While this first example was easy enough to solve, for more complicated examples
it will be easier to write Equation 15.9 in the form

sl - ¢

15.3. Polynomial Pieces 33

Alternatively. we can write
p=Ca, (15.10)

where we call C, the constraint marrix.' If having vectors of points bothers you,
you can consider each dimension independently (so that p is [xg z;] or [yy 1))
and a is handled correspondingly).

We can solve Equation 15.10 for a by finding the inverse of C. This inverse
matrix which we will denote by B is called the basis matrix. The basis matrix
is very handy since it tells us how to convert between the convenient parameters
p and the canonical form a, and, therefore, gives us an easy way to evaluate the
curve

flu)=uBp.

We can find a basis matrix for whatever form of the curve that we want, providing
that there are no non-linearities in the definition of the parameters. Examples of
non-linearly defined parameters include the length and angle of the line segment.

Now, suppose we want lo parameterize the line segment so that py is the half-
way point {u = (1.5), and p; is the ending point (u = 1). To derive the basis
matrix for this parameterization, we sel

po= f(05)= lag+05a,
pm= f{l)= 1lag+1a;.
So
e-[1 1]
and therefore

15.3.3 Beyond Line Segments

Line segments are so simple that finding a basis matrix is trivial. However, it was
sood practice for curves of higher degree. First, let's consider quadratics (curves
of degree two). The advantage of the canonical form (Equation 15.4) is that it
works for these more complicated curves, just by letting n be a larger number.

V'We assume the form of a vector (row or column) is obvious from the context, and we will skip atl
of the transpose symbols for vectors.

314 15. Curves

A quadratic (a degree-two polynomial) has three coefficients, ag, ay, and ag,
These coefficients are not convenient for describing the shape of the curve. How-
ever, we can use the same basis matrix method to devise more convenient param-
eters. If we know the value of u, Equation 15.4 becomes a linear equation in the
parameters, and the linear algebra from the last section still works.

Suppose that we wanted to describe our curves by the position of the begin-
ning (u = 0), middle’ (¥ = 0.5), and end (u = 1). Entering the appropriate
values into Equation 15.4:

po =f(0) =ay+0' a; +07 a,,
p =f(05) =ag+ 05 a; +05 aj,
p: =fi(1) = ap+ 1! a; +1° ag.

So the constraint matrix is

1 0 0
C= |1 25 |,
1 = 1
and the basis matrix is
1 { 0
B=C!=|-3 4 -1
g -4 2

There is an additional type of constraint {or parameter) that is sometimes con-
venient to specify: the derivative of the curve (with respect to its free parameter)
at a particular value. Intuitively, the derivatives tell us how the curve is changing,
s0 that the first derivative tells us what direction the curve is going, the second
derivative tells us how quickly the curve is changing direction, etc. We will see
examples of why it is useful to specify derivatives later.

For the quadratic,

fiu) = ap + ayu + agu’,

the derivatives are simple:
df
["'{u} = &; = a; + 2asu,

g £Fdf
o Sl

IMotice that this is the middle of the purameter space, which might not be the middle of the curve
itself:

fri{'u} =

15.3. Polynomial Pieces 31s

Or, more generally,

i) PR P
£'(u) = T il — D ay.

=2

For example, consider a case where we want to specify a guadratic curve
segment by the position, first, and second derivative at its middle (u = 0.5),

po =f(0.5) = ap+ 05 a+ 0.5% aj,
pr =05 = a+ 2 05 ap
pa =f"(05) = 2 as.

The constraint matrix is

1 .5 .25
C=|0 1 X | s
0 0 2

I =5 .12
B=C'!=|0 1 =5 1.
0

15.3.4 Basis Matrices for Cubics

Cubic polynomials are popular in graphics (See Section 15.5). The derivations
for the various forms of cubics are just like the derivations we’ve seen already in
this section. We will work through one more example for practice,

A very useful form of a cubic polynomial is the Hermire form, where we
specify the position and first derivative at the beginning and end, that is,

po = f(0) =ap+ 0Ma; + 0?ag+ 0* ag,
pr = fi{0) = a; +2 0laz+ 3 07a,,
pz = f(1) =ap+ 1'ay + 1%2ap+ 1? ag,

ps = f'(1) a; +2 1las+ 3 1?as,

i

316 15. Cury5,3. Polyn
Thus, the constraint matrix is = (to:
described i
[1 0 0 0 —t
o100 Wﬁ_-““.d
C= . set up an
i1 T A g 1 basi
(01 2 3 i
and the hasis matrix is F
1 0 0 0 1
B_C - ¢ 1 0 0 i
-3 =2 3 -l Thes
We will discuss Hermite cubic splines in Section 15.5.2.
18
15.3.5 Blending Functions ¥
If we know the basis matrix, B. we can multiply it by the parameter vector, u, i M f
get a vector of functions fynctio
b(u) =uB. Int
Notice that we denote this vector by b(u) to emphasize the fact that its valut W

depends on the free parameter 1. We call the elements of b{u) the blending
tions, because they specify how to blend the values of the control point
together;

L
£(u) = bi(u)p:. (15.11)
i=(l
It is important to note that for a chosen value of u, Equation 15.11 is a linear
equation specifying a linear blend {or weighted average) of the control poin 5.
This is true no matter what degree polynomials are “hidden” inside of the by
functions.
Blending functions provide a nice abstraction for describing curves, Any [vpe
of curve can be represented as a linear combination of its control points, whes
those weights are computed as some arbitrary functions of the free parameter.

15.3.6 Interpolating Polynomials

In general, a polynomial of degree n can interpolate a set of n + 1 values. If
we are given a vector p = (g,ps) of points to interpolate and a vector

15.3. Polynomial Pieces N7

t = (to,...,tn) of increasing parameter values, ; # ;, we can use the methods
described in the previous sections to determing an 1 + 1 = 1 + | basis matrix that
gives us a function f(t) such that f(t;] = p.. For any given vector t, we need to
set up and solve an n = 1 = n 4 1 linear system. This provides us with a set of
n + 1 basis functions that perform interpolation:

£(t) = 3 pabilt).
1=0

These interpolating basis functions can be derived in other ways. One partic-
ularly elegant way to define them is the Lagrange form:

b=]I et (15.12)

JemOgki s

There are more computationally efficient ways to express the interpolating basis
functions than the Lagrange form (see De Boor (1978) for details).

Interpolating polynomials provide a mechanism for defining curves that in-
terpolate a set of points. Figure 15.3 shows some examples. While it is possible
to create a single polynomial to interpolate any number of points, we rarely use
high-order polynomials to represent curves in computer graphics. Instead, inter-
polating splines (piecewise polynomial functions) are preferred. Some reasons
for this are considered in Section 15.5.3.

1 3 5 1 &

(8] Inforpodating palynomind through {b) Interpalating poéynomial through () Inbarpolading pofynormial Brough five and six ponis
fva points S painds

Figure 15.3. Interpolating polynomials through multiple points. Notice the axtra wiggles
and over-shoofing between points. In (c), when the sixth peint Is added, it compistely
changes the shape of the curve due to the non-local nature of interpodating polynomials.

318 15. Curves

15.4 Putting Pieces Together

MNow that we've seen how to make individual pieces of polynomial curves, we can
consider how to put these pieces together.

15.4.1 Knots

The basic idea of a piecewise parametric function is that each piece is only used
over some parameter range. For example, if we want to define a function that
has two piecewise linear segments that connect three points (as shown in Fig-
ure 15.4(a)), we might define

{t'}{Eu} if0<u<i,
flu) =

(15.13)
B(2u—1) if<u<l,

where f; and f; are functions for each of the two line segments. Notice that
we have re-scaled the parameter for each of the pieces Lo facilitate writing their

equations as
fi{u) = (1 - u)pi + upz.

For each polynomial in our piecewise function, there is a sile {or parameter
value) where it starts and ends. Sites where a piece function begins or ends are
called knots, For the example in Equation 15.13, the values of the knots are
0, 0.5, and 1.

We may also write piecewise polynomial functions as the sum of basis func-
tions, each scaled by a coefficient. For example, we can re-write the two line
segments of Equation 15.13 as

flu) = paby(u) 4 paba(u) + pabalu), (15.14)

b G

B2

BAU) amwms

g
{a) (b)

Figure 15.4. (a) Two line segments connect three polnts; (b) the blending functions for each
of the points are graphed at right.

15.4. Putting Pieces Together 39

where the function by (u) is defined as

i) = 1-2u f0<u<i,
: e otherwise.

and by and by are defined similarly. These functions are plotted in Figure 15.4(b).
The knots of a polynomial function are the combination of the knots of all of
the pieces that are used to create it. The knor vector is a vector that stores all of
the knot values in ascending order.
Notice that in this section we have used two different mechanisms for combin-
ing polynomial pieces: using independent polynomial pieces for different ranges
of the parameter and blending together piecewise polynomial functions,

15.4.2 Using Independent Pieces

In Section 15.3, we defined pieces of polynomials over the unil parameter range,
If we want to assemble these pieces, we need to convert from the parameter of the
overall function to the value of the parameter for the piece. The simplest way to
do this is to define the overall curve over the parameter range [(), n] where n is the
number of segments. Depending on the value of the parameter, we can shifl it 1o
the required range,

15.4.3 Putting Segments Together

If we want to make a single curve from two line segments, we need to make sure
that the end of the first line segment is at the same location as the beginning of the
next. There are three ways to connect the two segments (in order of simplicity):

1. Represent the line segment as its two endpoints, and then use the same point
for both. We call this a shared-point scheme.

2. Copy the value of the end of the first segment to the beginning of the second
segment every time that the parameters of the first segment change. We call
this a dependency scheme.

3. Write an explicit equation for the connection, and enforce it through nu-
merical methods as the other parameters are changed.

While the simpler schemes are preferable since they require less work, they also
place more restrictions on the way the line segments are parameterized. For ex-
ample, if we want to use the center of the line segment as a parameter (so that the

320 15. Curves

user can specify it directly), we will use the beginning of each line segment and
the center of the line segment as their parameters. This will force us to use the
dependency scheme.

Motice that if we use a shared point or dependency scheme, the total number
of control poinis is less than 7 = m, where 7 is the number of segments and m
is the number of control points for each segment; many of the control points of
the independent pieces will be computed as functions of other pieces. Notlice
that if we use either the shared-point scheme for lines (each segment uses its two

Each fre segmant is paramelarized by jits sndponts,

AN

Tha enid of one segmand s shared with thi beginning andpoint of the next segment.

!

Moving a control poirm causes a change only in a iocafized region,

Each Iine segmam is paramatanzed by Bs sndpont and
/ lts canterpain,

The endpoini of sepmant two ks equated
ta the “fres” end of segment ane,

Thia endgoen! of segrmant thiee i squaled
%o tha “free® end of segmant faa, atc.

A change in any control point causes
ALL Iader line sagments o be affected,

Figure 15.5. A chain of line segments with local control and one with non-local contral,

15.5. Cubics 321

endpoints as parameters and shares interior points with its neighbors), or if we
use the dependency scheme (such as the example one with the first endpoint and
midpoint), we end up with n + 1 controls for an n-segment curve.

Dependency schemes have a more serious problem. A change in one place in
the curve can propagate through the entire curve. This is called a lack of locality,
Locality means that if you move a point on a curve it will only effect a local
region, The local region might be big, but it will be finite. If a curve’s controls do
not have locality, changing a control point may effect points infinitely far away,

To see locality, and the lack thereof, in action, consider two chains of line
segments, as shown in Figure 15.5. One chain has its pieces parameterized by
their endpoints and uses point-sharing to maintain continuity. The other has its
pieces parameterized by an endpoint and midpoint and wses dependency propa-
gation to keep the segments together. The two segment chains can represent the
same curves: they are both a set of n connected line segmenis. However, because
of locality issues, the endpoint-shared form is likely te be more convenient for the
user. Consider changing the position of the first control point in each chain. For
the endpoint-shared version, only the first segment will change, while all of the
segments will be affected in the midpoint version, as in Figure 15.5. In fact, for
any point moved in the endpoint-shared version, at most two line segments will
change. In the midpoint version, all segments after the control point that is moved
will change, even if the chain is infinitely long.

In this example, the dependency propagation scheme was the one that did not
have local control. This is not always true. There are direct sharing schemes that
are not local and propagation schemes that are local.

We emphasize that locality is a convenience of control issue. While it is in-
convenient o have the entire curve change every lime, the same changes can be
made to the curve. It simply requires moving several points in unison,

15.5 Cubics

In graphics, when we represent curves using piecewise polynomials we usually
use either line segments or cubic polynomials for the pieces. There are a number
of reasons why cubics are popular in computer graphics:

® Piecewise cubic polynomials allow for €% continuity, which is generally
sufficient for most visual tasks. The C'' smoothness that quadratics offer is
often insufficient. The greater smoothness offered by higher-order polyno-
mials is rarely important.

322 15. Curves

® Cubic curves provide the minimum-curvature interpolants to a set of points.
That is, if you have a set of n + 3 points and define the “smoothest™ curve
that passes through them (that is the curve that has the minimum curvature
over its length), this curve can be represented as a piecewise cubic with n
segments.

o Cubic polynomials have a nice symmetry where position and derivative can
be specified at the beginning and end.

» Cubic polynomials have a nice tradeoff between the numerical issues in
computation and the smoothness.

Notice that we do not have to use cubics. They just lend to be a good tradeoff
between the amount of smoothness and complexity. Different applications may
have different tradeoffs. We focus on cubics since they are the most commonly
used.

The canonical form of a cubic polynomial is

f(u) = ap + ay u+ ag u’ + ag u?,
As we discussed in Section 15.3, these canonical form coefficients are not a con-
venient way to describe a cubic segment.

We seek forms of cubic polynomials for which the coefficients are a conve-
nient way to conirol the resulting curve represenied by the cubic. One of the main
conveniences will be to provide ways to insure the connectedness of the pieces
and the continuity between the segments.

Each cubic polynomial piece requires four coefficients or control points. That
means for a piecewise polynomial with n pieces, we may require up o 4n controd
points if no sharing between segments is done or dependencies used. More often,
some part of each segment is either shared or depends on an adjacent segment, so
the total number of control points is much lower. Also, note that a control point
might be a position or a derivative of the curve,

Unfortunately, there is no single “best” representation for a piecewise cubic,
It is not possible to have a piecewise polynomial curve representation that has all
of the following desirable properties:

1. each piece of the curve is a cubic;
2. the curve interpolates the control points;
3. the curve has local control;

4. the curve has €' continuity.

15.5. Cubics 323

We can have any three of these properties, but not all four; there are repre-
sentations that have any combination of three. In this book, we will discuss cubic
B-splines that do not interpolate their control points (but have local control and
are (C'*); Cardinal splines and Catmull-Rom splines that interpolate their control
points and offer local control, but are not "*; and natural cubics that interpolate
and are C*, but do not have local control.

The continuity properties of cubics refer to the continuity between the seg-
ments {at the knot points). The cubic pieces themselves have infinite continuity
in their derivatives (the way we have been talking about continuity so far), Note
that if you have a lot of control points (or knots), the curve can be wiggly, which
might not seem “smooth,”

15.5.1 MNatural Cubics

With a piecewise cubic curve, it is possible to create a € curve. To do this, we
need to specify the position and first and second derivative at the beginning of
each segment (50 that we can make sure that it is the same as at the end of the
previous segment). Notice, that each curve segment receives three out of its four
parameters from the previous curve in the chain. These € continuous chains of
cubics are sometimes referred to as narural cubic splines.

For one segment of the natural cubic, we need to parameterize the cubic by
the positions of its endpoinis and the first and second derivative at the beginning
point. The control points are therefore

po= f(0) =a + 0ag + 0%az + (Pag,
PL= f'rliﬂll ==]lag +2 P az +43 02 as,
P2 = f"{ﬂ] = 2 llﬂ.-'z +6 {]] Ay,
pa= f(1) =4a; -+ ll&] 4 12'&2 + ¥ g,

Therefore, the constraint matrix 1s

1 ¢ 0 0

0 1 0 0

i 00 2 0

111 1

and the basis matrix is

1] 0
. 0 1 0 0O
B G 0 0 S0
-1 =1 =5 1

324 15. Curves

Given a set of n control points, a natural cubic spline has rn— 1 cubic segments.
The first segment uses the control points to define its beginning position, ending
position, and first and second derivative at the beginning. A dependency scheme
copies the position, and first and second derivative of the end of the first segment
for use in the second segment,

A disadvantage of natural cubic splines is that they are not local. Any change
in any segment may require the entire curve to change (at least the part after
the change was made). To make matters worse, natural cubic splines tend to be
ill-conditioned: a small change at the beginning of the curve can lead to large
changes later. Another issue is that we only have control over the derivatives of
the curve at its beginning. Segments after the beginning of the curve determine
their derivatives from their beginning point.

158.5.2 Hermite Cubics

Hermite cubic polynomials were introduced in Section 15.3.4. A segment of a
cubic Hermite spline allows the positions and first derivatives of both of its end
points to be specified. A chain of segments can be linked into a € spline by
using the same values for the position and derivative of the end of one segment
and for the beginning of the next.

Given a set of n control points. where every other control point 13 a derivative
value, a cubic Hermite spline contains {vi—2) /2 cubic segments. The spline inter-
polates the points, as shown in Figure 15.6, but can guarantee only C'' continuity,

Hermite cubics are convenient because they provide local control over the
shape, and provide ("' continuity. However, since the user must specify both po-
sitions and derivatives, a special interface for the derivatives must be provided,
One possibility is to provide the user with points that represent where the deriva-
tive vectors would end if they were “placed” at the position point.

—— ——a—

Figure 15.6. A Harmite cubic spline made up of three segmants.

15.5. Cubics 325

156.5.3 Cardinal Cubics

A cardinal cubic spline is a type of €' interpolating spline made up of cubic
polynomial segments. Given a set of n control points, a cardinal cubic spline uses

— 2 cubic polynomial segments to interpolate all of its points except for the first
and last.

Cardinal splines have a parameter called tension that controls how “tight” the
curve is between the points it interpolates. The tension is a number in the range
[0, 1) that controls how the curve bends towards the next control point. For the
important special case of ¢ = (I, the splines are called Carmull-Rom splines,

Each segment of the cardinal spline uses four control points. For segment i,
the points used are ¢, ¢ + 1, § + 2, and i + 3 as the segments share three points
with their neighbors. Each segment begins at its second control point and ends at
its third control point. The derivative at the beginning of the curve is determined
by the vector between the first and third control points, while the derivative at the
end of the curve is given by the vector between the second and forth points, as
shown in Figure 15.7.

The tension parameter adjusts how much the derivatives are scaled. Specif-
ically, the derivatives are scaled by {1 —) /2. The constraints on the cubic are
therefore

f(0)= pa,
F[” = P&
£(0) = 3(1=1)(ps —p1),
f'(1) (1 —t){ps — p2).

Solving these equations for the control points (defining s = {1 — £)/2) gives

po= f(1)-5f(0) =a +(1-3) a + a + as,
p:= f(0) = 4y,

Pz = f{:l} =ag -+ a; -+ a; + ag.
ps= f0)+1F(1) =ay +1 a; +21 a; +31 a,

This yields the cardinal matrix

0 1]]
—&] 5 0
28 s—3 3—-25 -—s
—5 2—s5 s-2 5

B=C'=

Since the third point of segment i is the second point of segment i+ 1, adjacent
segments of the cardinal spline connect. Similarly, the same points are used to
specify the first derivative of each segment, providing ! continuity.

s 'p:r'p‘ p-‘r
v 9 &

® ® -
P eh

Figure 15.7. A segment of
a cardinal cubic spline intar-
polates its second and third
coniral points (ps and pa),
and uses its other paints fo
determina tha derivatives at
the beginning and end.

326 15. Curves

Figure 15.8. Cardinal splines through seven control points with varying values of tension
paramatar §.

Cardinal splines are useful, because they provide an easy way (o interpolate
a set of points with C' continuity and local control. They are only €', so they
sometimes get “kinks” in them. The tension parameter gives some control over
what happens between the interpolated points, as shown in Figure 15.8, where a
set of cardinal splines through a set of points is shown. The curves use the same
control points, but they use different values for the tension parameters. Note that
the first and last control points are not interpolated.

Given a set of n points to interpolate, you might wonder why we might prefer
to use a cardinal cubic spline (that is a set of n — 2 cubic pieces) rather than a sin-
gle, order n# polynomial as described in Section 15.3.6. Some of the disadvantages
of the interpolating polynomial are:

o The interpolating polynomial tends to overshoot the points, as seen in Fig-
ure 15.9. This overshooting gets worse as the number of points grows
larger. The cardinal splines tend to be well behaved in between the points.

s Control of the interpolating polynomial is not local. Changing a point at the
beginning of the spline affects the entire spline. Cardinal splines are local:
any place on the spline is affected by its four neighboring points at most.

e Evaluation of the interpolating polynomial is not local. Evaluating a point
on the polynomial requires access to all of its points. Evaluating a point
on the piecewise cubic requires a fixed small number of computations, no
maiter how large the total number of points is.

There are a variety of other numerical and technical issues in using interpolating
splines as the number of points grows larger. See (De Boor, 2001) for more
information.

A cardinal spline has the disadvantage that it does not interpolate the first or
Tast point, which can be easily fixed by adding an extra point at either end of

15.6. Approximating Curves 327

Figure 15.9. Splines interpolating nine control points (marked with small crosses). The
thick gray line shows an interpolating polynomial, The thin, dark line shows a Catmull-Rom
spling. The latter is made of seven cubic segmenis, which are sach shown in alternating
gray lones,

the sequence. The cardinal spline also is not as continuous—providing only '
continuity at the knots.

15.6 Approximating Curves

It might seem like the easiest way to control a curve is to specify a set of points
for it to interpolate. In practice, however, interpolation schemes often have unde-
sirable properties because they have less continuity and offer no control of what
happens between the points. Curve schemes that only approximate the poinis are
often preferred. With an approximating scheme, the control points influence the
shape of the curve, but do not specify it exactly. Although we give up the ahility
to directly specify points for the curve 1o pass through, we gain better behavior
of the curve and local control. Should we need to interpolate a set of points, the
positions of the control points can be computed such that the curve passes through
these interpolation points.

The two most important types of approximating curves in computer graphics
are Bézier curves and B-spline curves.

15.6.1 Bézier Curves

Bézier curves are one of the most common representations for free-form curves
in computer graphics. The curves are named for Pierre Bézier, one of the people
who was instrumental in their development. Bézier curves have an interesting
history where they were concurrently developed by several independent groups,
A Bézier curve is a polynomial curve that approximates its control points, The
curves can be a polynomial of any degree. A curve of degree d is controlled by

328 15, Curves

d + 1 control points. The curve interpolates its first and last control points, and
the shape is directly influenced by the other points,

Often, complex shapes are made by connecting a number of Bézier curves of
low degree, and in computer graphics, cubic (d = 3) Bézier curves are commaonly
used for this purpose. Many popular illustration programs, such as Adobe Tllus-
trator, and font representation schemes, such as that used in Postscript, use cubic
Bézier curves. Bézier curves are extremely popular in computer graphics because
they are easy to control, have a number of useful properties, and there are very
efficient algorithms for working with them.

Bézier curves are constructed such that;

e the curve interpolates the first and last control points, with v = { and 1,
respectively;

e the first derivative of the curve at its beginning (end) is determined by the
vector between the first and second (next to last and last) control points,
The derivatives are given by the vectors between these poinis scaled by the
degree of the curve;

» higher derivatives at the beginning {end) of the curve depend on the points
al the beginning {end) of the curve. The n*" derivative depends on the first
ilast) m + 1 points,

For example, consider the Bézier curve of degree 3 as in Figure 15.10. The
curve has four (d + 1) control points. [t begins at the first control point (pg)
and ends at the last (p;). The first derivative at the beginning is proportional to
the vector between the first and second control points (p; — po). Specifically,
f'{0) = 3{p1 — pa). Similarly, the first derivative at the end of the curve is given

pl

Fi0)=3{p1-p0}
p3

PO \:'nhstp}nzb

Figure 15.10. A cubic Béziar curve is controlled by four points. It interpolates the first and
last, and the baginning and final derivatives ara three times the vectors batween the first two
(or last two) points.

15.6. Approximating Curves 329 N

by f'(1) = 3(pa — p2). The second derivative at the beginning of the curve can
be determined from control points py, pp and pa.

Using the facts about Bézier cubics in the preceding paragraph. we can use the
methods of Section 15.5 to create a parametric function for them. The definitions
of the beginning and end interpolation and derivatives give

Po £(0) = az0? +as0? + a0+ ag,
P £(1) =az1*+agl®+a;1 + ag,
Ipr—-m)= F{0) = 333“2 + 2a,l +a,,
3pa—p2)= (1) =3az1*+2as1 +a. |

o

This can be solved for the basis matrix

1 () 0 0
. 33 00 |
S
B=C 3 -6 3 0|
EVi e |

and then writlen as
flu) = (1—3u+3u? — u?)pg + (3u—6u” +3u*)py + (3u® = 3u®)pa + (v)pa,

ar ;
flu) = biaps:
=1

where the & 4 are the Bérier blending functions of degree 3;

bpa= (1-u)?,
ha= 3u(l —up,
bpa= 3u?(1—u),
b'd,,;_q = u"’,

Fortunately, the blending functions for Bézier curves have a special form that
works for all degrees. These functions are known as the Bernstein basis polyno-
mials and have the general form

bk.lltu] = 'CLJ'LI.‘] u.“'- {1- u}[u—k]I

where 71 is the order of the Bézier curve, and I is the blending function number
between | and # (inclusive). C'(n. &) are the binomial coefficients:

fit!

Cl:H,.iIT:I — m.

330 15. Curves
A A || A | A

1INl |Aal N |m

Figure 15.11. Various Bézier segments of degree 2-6. The control points are shown with
crossas, and the control polygons (line segments connecting the control points) are also
SHCWT,

Given the positions of the control points py., the function to evaluate the Bézier
curve of arder 1 (with i + | control points) is

plu) = 3 peCin k) u* (1 —w)" ¥,

k=l

Some Bézier segments are shown in Figure 15.11,
Bézier segments have several useful properties:

e The curve 15 bounded by the convex hull of the control poims.

e Any line intersects the curve no more times than it intersects the set of
line segments connecting the control points. This is called the variation
diminishing property. This property is illustrated in Figure 15,12,

e The curves are symmetric: reversing the order of the control points yields
the same curve, with a reversed parameterization,

o The curves are affine invariani. This means that translating, scaling, rotat-
ing, or skéwing the control points is the same as performing those opera-
tions on the curve itself.

o There are good simple algorithms for evaluating and subdividing Bézier
curves into pieces that are themselves Bézier curves. Because subdivision
can be done effectively using the algorithm described later, a divide and
conquer approach can be used to create effective algorithms for important
tasks such as rendering Bézier curves, approximating them with line seg-
ments, and determining the intersection between two curves,

15.6. Appraoximating Curves 331

Figure 15.12. The wanahion diminishing propery of Bézier curves means that the curve
doas not cross a line more than its controd polygon does. Therefore, if the controd polygon
has no “wiggles," the curve will not have them either. B-splines (Section 15.6.2) also have
this property,

When Bézier segments are connected together to make a spline, connectivity be-
tween the segments is created by sharing the endpoinis. However, confinuity
of the derivatives must be created by positioning the other control points. This
provides the user of a Bézier spline with control over the smoothness. For G
continuity, the second-to-last point of the first curve and the second point of the
second curve must be collinear with the equated endpoints. For C'! continu-
ity, the distances between the points must be equal as well. This is illustraied
in Figure 15.13, Higher degrees of continuity can be created by properly posi-
toning more points,

Geometric Intuition for Bezier Curves

Bézier curves can be derived from geometric principles, as well as from the alge-
braic methods described above. We outline the geometric principles because they
provides intuition on how Bézier curves work.

Imagine that we have a set of control points from which we want to create
a smooth curve. Simply connecting the points with lines {to form the conirol
polygon) will lead to something that is non-smooth. It will have sharp corners. We
could imagine “smoothing” this polygon by cutting off the sharp corners, vielding
a new polygon that is smoother, but still not “smooth”™ in the mathematical sense
(since the curve is still a polygon, and therefore only C'', We can repeat this
process, each time yielding a smoother polygon, as shown in Figure 15.14. In the
limit, that is if we repeated the process infinitely many times, we would obtain a
€' smooth curve.

What we have done with corer cutting is defining a subdivision scheme, Thalt
is, we have defined curves by a process for breaking a simpler curve into smaller
pieces (e.g., subdividing it). The resulting curve is the limit curve that is achieved

Figure 15.13. Two Bézier
segments connect to form
a o spline, because the
vector between the last two
points of the first segment
is equal to the vector be-
tween the first two points of
the second sagmant,

332 15. Curves

Figure 15.14. Subdivision procedure for quadratic Béziers. Each line segment is divided in
halt and these midpaints are connected (gray points and lines). The Interior control point Is
moved to the midpoint of the new line sagment {white circle).

by applying the process infinitely many times. If the subdivision scheme is de-
fined correctly, the result will be a smooth curve, and it will have a parametric
form.

Let us consider applying corner cutting to a single corner. Given three points
(py. P1. P2}, we repeatedly “cut off the comers™ as shown in Figure 15.15. At
each step, we divide each line segment in half, connect the midpoints, and then
move the corner point to the midpoint of the new line segment. Note that in this
process, new points are introduced, moved once, and then remain in this position
for any remaining iterations, The endpoints never move,

If we compute the “new” position for pe as the midpoint of the midpoints, we
get the expression

"_l(l +1 }+1{£ +l)
PE_?EPU Epl 5laP1 2F':l:-

The construction actually works for other proportions of distance along each
segment. If we let u be the distance between the beginning and the end of each

1OOC

Figure 15.15. By repeatedly cutting the corners off @ polygon, we approach a smoath curve,

15.6. Approximating Curves 333

segment where we place the middle point, we can re-write this expression as
plu) = (1 —u)((1 —u)py +upy) +u((l — u)p; +upa).
Regrouping terms gives the quadratic Bézier function:

Ba(u) = (1 - u)*pg + 2u(l —u)p; + u’pa.

The De Casteljau Algorithm

One nice feature of Bézier curves is that there is a very simple and general method
for computing and subdividing them. The method, called the de Casteljan algo-
rithm, uses a sequence of linear interpolations to compute the positions along the
Bézier curve of arbitrary order. It is the generalization of the subdivision scheme
described in the previous section.

The de Casteljau algorithm begins by connecting every adjacent set of points
with lines, and finding the point on these lines that is the v interpolation, giving a
set of n— 1 points. These points are then connected with straight lines, those lines
are interpolated {again by w), giving a set of n — 2 points. This process is repeated
until there 15 one point. An illustration of this process is shown in Figure 15.16.

The process of computing a point on a Bézier segment also provides a method
for dividing the segment at the point. The intermediate points computed during
the de Casteljau algorithm form the new control points of the new, smaller seg-
ments, as shown in Figure 15.17.

The existence of a good algorithm for dividing Bézier curves makes divide-
and-conquer algorithms possible. For example, when drawing a Bézier curve
segment, it is easy to check if the curve is close 1o being a straight line because it is
bounded by its convex hull, If the control points of the curve are all close to being
co-linear, the curve can be drawn as a straight line. Otherwise, the curve can be

\ L '@ L 4

Figure 15.16. An lustration of the de Casteljau algorithm for & cuble Bégzler. The left-hand
image shows the construction for u= 0.5. Tha right-hand image shows the construction for
0.25, 0.5, and 0.75.

334 15. Curves

4 o

Figure 15.17. The de Casteljau algorithm is used o subdivide a cubic Bézier segment,
The initial points (black diamonds A, B, C, and D) are linearly interpolated to yield gray circles
(AB, BC, CD), which are linearly interpolated o yield white circles (AC, BDY), which are linearly
interpolated to give the point on the cubic AD. This process also has subdivided the Bézier

segment with control points A.B,C.D into two Bézier segments with control points A, AB, AC,
AD and AD, BD, CD, D,

divided into smaller pieces. and the process can be repeated. Similar alporithms
can be used for determining the intersection between two curves, Because of the
existence of such algorithms, other curve representations are often converted to
Bézier form for processing.

15.6.2 B-Splines

B-splines provide a method for approximating a set of n points with a curve made
up of polynomials of degree d that gives C''"~') continuity. Unlike the Bézier
splines of the previous section, B-splines allow curves to be generated for any
desired degree of continuity (almost up to the number of points). Because of
this, B-splines are a preferred way to specify very smooth curves (high degrees
of continuity) in computer graphics. 1f we want a C* or higher curve through an
arbitrary number of points, B-splines are probably the right method.

We can represent a curve using a linear combination of B-spline basis func-
tions. Since these basis functions are themselves splines, we call them basis
splines or B-splines for short. Each B-spline or basis function is made up of a
set of d + 1 polynomials each of degree . The methods of B-splines provide
general procedures for defining these functions.

The term B-spline specifically refers o one of the basis functions, not the
function created by the linear combination of a set of B-splines. However, there
is inconsistency in how the term is vsed in computer graphics. Commonly, a “B-
spline curve” is used to mean a curve represented by the linear combination of
B-splines.

The idea of representing a polynomial as the linear combination of other poly-
nomials has been discussed in Section 15.3.1 and 15.3.5. Representing a spline

15.6. Approximating Curves 335

as & linear combination of other splines was shown in Section 15.4.1. In fact, the
example given is a simple case of a B-spline,

The general notation for representing a function as a linear combination of
other functions is

£(t) =Y pibilt), (15.15)
i=1

where the p, are the coefficients and the b, are the basis functions. If the coeffi-
cients are points {e.g. 2 or 3 vectors), we refer to them as control points. The key
to making such a method work is to define the &; appropriately. B-splines provide
a very general way to do this.

A set of B-splines can be defined for a number of coefficients » and a param-
eter value k.” The value of k is one more than the degree of the polynomials used
o make the B-splines (k = d + 1.)

B-Splines are important because they provide a very general method for cre-
ating functions (that will be useful for representing curves) that have a number
of useful properties. A curve with n points made with B-splines with parameter
value k is:

o -2 continuous;

made of polynomials of degree k — 1;

has local control. Any site on the curve only depends on & of the control
points;

is bounded by the convex hull of the points;

exhibits the variation diminishing property illustrated in Figure 15.12.

A curve ereated using B-splines does not necessarily interpolate its control points,

We will introduce B-splines by first looking at a specific, simple case to in-
trocduce the concepts. We will then generalize the methods and show why they
are interesting, Because the method for computing B-splines is very general, we
delay introducing it until we have shown what these generalizations are.

*The B-spline perameter is sctually the erder of the polynomials used in the B-splines, While this
terminology is not uniform in the litersture, the use of the B-spline parameter & as a value ong greater
than the polynomial degree is widely used, although some texts (see the chopier notes) write all of the
equations in terms of polynomial degree.

336 15. Curves

| by .zn:/\ JEXC
[i] o

0 1 2 3 4 4] 1 2 3

Figure 15.18. B-Splines with d =2,

Uniform Lingar B-Splines

Consider a set of basis functions of the following form:

t—i ifi<t<i+]l,
bialt) =<2 —t+i ifi+l1<t<i+?2, (15.16)
] otherwise,

Each of these functions looks like a little triangular “hat” between ¢ and i + 2 with
its peak at 1 + 1. Each is a piecewise polynomial, with knots at 4, i + 1, and i + 2.
Twao of them are graphed in Figure 15.18;

Each of these functions b, - is a first degree (linear) B-spline. Because we will
consider B-splines of other parameter values later, we denote these with the 2 in
the subscript.

Notice that we have chosen to put the lower edge of the B-spline (its first knot)
at 7. Therefore the first knot of the first B-spline (i = 1} is at 1. Tteration over the
B-splines or elements of the coefficient vector is from 1 to n (see Equation 15.15).
When B-splines are implemented, as well as in many other discussions of them,
they often are numbered from (ton — 1.

We can create a function from a set of n control points using Equation 15,135,
with these functions used for the b, to create an “overall function™ that was influ-
enced by the coefficients. If we were 1o use these (& = 2) B-splines to define the
overall function, we would define a piccewise polynomial function that linearly
interpolates the coefficients p; between + = k and ¢ = n + 1. Note that while
(k = 2) B-splines interpolate all of their coefficients, B-splines of higher degree
do this under some specific conditions that we will discuss in Section 15.6.3,

Some properties of B-splines can be seen in this simple case. We will write
these in the general form using k, the parameter, and n for the number of coeffi-
cients or control points.

» Each B-spline has & 4+ 1 knots,

» Each B-spline is zero before its first knot and after its last knot.

15.6. Approximating Curves 337

o The overall spline has local control because each coefficient 15 only mul-
tiplied by one B-spline, and this B-spline is non-zero only between & + 1
knots,

e The overall spline has n + & knots.

& Each B-spline is C''*~?) continuous, therefore the overall spline is 1%~
continuous,

The set of B-splines sums to 1 for all parameter values between knots k
and n + 1. This range is where there are b B-splines that are non-zero.
Summing to 1 is important because it means that the B-splines are shift
invariant: translating the control points will translate the entire curve.

e Between each of its knots, the B-Spline is a single polynomial of degree
i = k — 1, Therefore, the overall curve (that sums these together) can also
be expressed as a single, degree o polynomial between any adjacent knots,

In this example, we have chosen the knots to be uniformly spaced. We will con-
sider B-splines with non-uniform spacing later. When the knot spacing is uniform,
each of the B-splines are identical except for being shifted. B-splines with uni-
form knot spacing are sometimes called wniform B-splines or periodic B-splines.

Uniform Quadratic B-Splines

The propertics of B-Splines listed in the previous section were intentionally writ-
ten for arbitrary = and &. A general procedure for constructing the B-splines will
be provided Iater. but first, lets consider another specific case with & =

The B-spline bs 5 is shown in Figure 15.19. It is made of quadratic pieces
(degree 2), and has 3 of them. It is ' continuous and is non-zero only within
the 4 knots that it spans. Notice that a quadratic B-spline is made of 3 pieces,
one between knot | and 2, one between knot 2 and 3, and one between knot 3

0 1 2 3 4 L]

Figure 15.19. The B-spline bs 5 with uniform knot spacing.

338 15. Curves

and 4. In Section 15.6.3 we will see a general procedure for building these func-
tions. For now, we simply examine these functions:

Ju? fi<t<itl u=_t—1i,
—uwtput+l Fi41<tcid?2 u=t—_[(i41)
a(t) = z = '{15.17
bus(®) 3(1 - u)? Hfi+2<t<i4+d u=t-—(i+2), f }
] otherwise,

In order to make the expressions simpler, we wrote the function for each part as
if it applied over the range 0 to 1.

If we evaluate the overall function made from summing together the B-splines,
at any time only % (3 in this case} of them are non-zero, One of them will be in
the first part of Equation 15.17, one will be in the second part, and one will be
in the third part. Therefore, we can think of any piece of the overall function as
being made up of a degree d = k — 1 polynomial that depends on k coefficients.
For the & = 3 case, we can write

1l 5
S Pitg

Flu) = 3

1 1

E“ —u)?pi 4 (—u® +ut i}pH-j -+

where u = ¢ —i. This defines the piece of the overall function wheni <t < i+ L
If we have a set of n points. we can use the B-splines to create a curve. If we

have seven points, we will need a set of seven B-splines. A set of seven B-splines

X
aX
w3

x x
1 T

Figure 15.21. Curve made from seven quadratic (k=3) B-splines, using seven cantral
points.

158, Approximating Curves .] 339

for & — 3 is shown in Figure E5.20. Notee that there sre n 4+ & (180 koots, that
the sum of the B-splines is | ower the range b e+ L (knots 3 throogh 8). A
curve speciiad using these B-splines and a set ol poins is shown in Figure 1521,

Uniform Cubic B-Splines

Because cubic polyoomials are so popular in computer graphics, the special case
of B-splines with & =~ 4 is sulficiently mportant that we consider it before dis-
cussing Uue general case. A B-spline of third degree is defined by 4 cubic poly-
nomial picees. The geners] process by which these pieces are determioed is de-
serbed lawer, but the resull

l;-u3 Wi ftn w=t
ILI’ Bl Rt 3w 1) Tt -2 w=t (110,
B alth — 4 %.—lﬁ-ua — et 4+ 4) i Xted 3 ow=t {2
%l;—u‘u’ = 11 e 3t d o w=¢ -3
! otherwise,
(1518

This degree 3 B-spline is graphed for ¢ = 1 in Figure 1322,

W can wrile the Tunction for the overall curve between knets & — 4 and 7 — 4
as a funclion of the parameter 1 between (0 and 1 and the four control points that
influerce i

1 : . 1. . .
Eouy — E[—u'L + 40® =+ Lip, — EL:!‘.ML — i —d)pa
il

Lo !
i ﬁi:' 3'-!,("5 | 311’3 + 3u+ | oy — i_-ﬂ'ap"-l 1.
4]

1- t-i+1 -2 =+3 I=i+d

Flgura 1522 The cubig (k= 4] B-gpline with unifarm knots,

340 15. Curves

This can be re-written using the matrix notation of the previous sections, giv-
ing a basis matrix for cubic B-splines of

1 3 -3 1

1| 3 =6 3 o
My=2x|235 o 8
1 4 1 0

Unlike the matrices that were derived from constraints in Section 15.5, this ma-
trix is created from the polynomials that are determined by the general B-spline
procedure defined in the next section.

15.6.3 Non-Uniform B-Splines

One nice feature of B-splines is that they can be defined for any & > 1. So if we
need a smoother curve, we can simply increase the value of k. This is illustrated
in Figure 15.1,

So far, we have said that B-splines generalize to any & = 1 and any n = d.
There is one last generalization to introduce before we show how to actually com-
pute these B-splines. B-splines are defined for any non-decreasing knot vector.

For a given n and k., the set of B-splines {and the function created by their
linear combination) has n + & knots. We can write the value of these knots as
a vector, that we will denote as t. For the uniform B-splines, the knot vector is
[1,2,3,...,n + k. However, B-splines can be generated for any knot vector of
length n + &, providing the values are non-decreasing (e.g., ti51 = 1)

There are two main reasons why non-uniform knot spacing is useful; it gives
us control over what parameter range of the overall function each coefficient af-

k=2 k=4
k3 ® = = = =
.1 o k] x =
k=3 k=5
W = o = = o o L b 3 = H "
vV N\ N\ AN
™ o » 1 1 x o Y 0 =

Figure 15.1. B-spline curves using the same unifarm set of knots and the same control
points, for various values of k. Mote that as k increases, the valid parameter range for the

curve shrinks.

15.6. Approximating Curves 341

fects, and it allows us to repeat knots (e.g., create knots with no spacing in be-
tween) in order 1o create functions with different properties around these points.
The latter will be considered later in this section.

The ability to specify knot values for B-splines is similar to being able to spec-
ify the interpolation sites for interpolating spline curves. It allows us to associate
curve features with parameter values. By specifying a non-uniform knot vector,
we specify what parameter range each coefficient of a B-spline curve affects. Re-
member that B-spline ¢ is non-zero only between knot ¢ and knot ¢ + k. Therefore,
the coefficient associated with it only affects the curve between these parameter
values,

Omne place where control over knot values is particularly vseful is in inserting
or deleting knots near the beginning of a sequence. To illustrate this, consider a
curve defined using linear B-splines (k = 2) as discussed in Section 15.6.2. For
n = 4, the uniform knot vector is [1, 2, 3,4, 5, 6]. This curve is controlled by a
set of four points and spans the parameter range t = 2 o t = 5. The “end” of
the curve (f = 5) interpolates the last control point. If we insert a new point in
the middle of the point set, we would need a longer knot vector. The locality
properties of the B-splines prevent this insertion from affecting the values of the
curve at the ends. The longer curve would still interpolate its last control point
at its end, However, if we chose to keep the uniform knot spacing, the new knot
vector would be [1,2, 3,4, 5,6, 7], The end of the curve would be at ¢ = 6, and the
parameter value at which the last control point is interpolated will be a different
parameter value than before the insertion. With non-uniform knot spacing, we can
use the knot vector [1, 2,3, 3.5, 4, 5, G} so that the ends of the curve are unaffected
by the change. The abilities to have non-uniform knot spacing makes the locality
property of B-splines an algebraic property, as well as a peometric one.

We now introduce the general method for defining B-splines. Given values
for the number of coefficients n, the B-spline parameter &, and the knot vector t
{which has length 1 + &), the following recursive equations define the B-splines:

I ift; <t <ty
. e 15.19
A0 {{J otherwise. { }

bipalt) = =bbipoa () + s by een(t). (15.20)

tipha1= tipx—tida

This equation is know as the Cox-de Boor recurrence. It may be used to compute
specific values for specific B-splines. However, it is more often applied alge-
braically to derive equations such as Equation 15,17 or 15.18,

As an example, consider how we would have derived Equation 15.17. Using
a uniform knot vector [1,2,3, ., |, ¢; = i, and the value £ = 3 in Equation 15.20

342

yields

e~ . (i+3)—t

bi3(t) G+2)—i ~2+{i+3}—(t'+1]

bi-i-l]

1 1
= E{t —i}ba+ -2-{!' +3—thhira

Continuing the recurrence, we must evaluate the recursive expressions:

o) = bt g ()t
Ml = Foon ot G- rn
= (= idbig+(i+2— by
bi-l-i,ﬂ‘“:] S {" i 1} ’bi-f-l.]

(i+1)+2-1)—(i+1)

((i+1)+2) -t -
(G4 1)+2) = (i + 1)+ 1) otk

= (t—i+Dbiprg + (i +3 —t)ba,y.

Inserting these results into Equation 15.22 gives:

+

Bus(t) = 5 (¢ =)((t — i+ i+ 2 Dbisr)

1
+ §[i +3 =1}t =i+ biprg + (F4+3 — t)biya,:.

To see that this expression is equivalent to Equation 15.17, we note that each
of the (k = 1) B-splines is like a switch, turning on only for a particular paramete
range. For instance, b; ; is only non-zero between and i + 1. So,if i <t < i+ 1
only the first of the (k = 1) B-splines in the expression is non-zero, so

1 g - * k)
byalt) = EH —iPifict<i+l
Similar manipulations give the other parts of Equation 15.17.

Repeated Knots and B-Spline Interpolation
While B-splines have many nice properties, functions defined using them gener:
ally do not interpolate the coefficients. This can be inconvenient if we are using
them to define a curve that we want to interpolate a specific point. We give
brief overview of how to interpolate a specific point using B-splines here. A mont
complete discussion can be found in the books listed in the chapter notes,

15.6. Approximating Curves 343

X x x

{a) Uniform knots () Mon-uniform knots

Figure 15.23. A curve parameaterized by quadratic B-splines (k = 3) with seven control
paints, On the left, uniform knots vector [1,2,3,4.6,6,7,8,9,10] is used. On the right, the non-
uniform knot spacing [1,2,3,4,4,6,7.8,8,10] is used. The duplication of the 4th and 8th knot
means that all interior knots of the 3rd and 7th B-spline are equal, so the curve interpolates
the control point associated with those points.

One way 1o cause B-splines to interpolate their coefficients is to repeat knots.
If all of the interior knots for a particular B-spline have the same value, then the
overall function will interpolate this B-spline’s coefficient. An example of this is
shown in Figure 15.23,

Interpolation by repeated knots comes at a high cost: 1t removes the smoath-
ness of the B-spline and the resulting overall function and represented curve.
However, at the beginning and end of the spline, where continuity is not an is-
sue, knot repetition is useful for creating endpoint interpolating B-splines, While
the first {or last) knot's value is not important for interpolation, for simplicity, we
make the first (or last) k knots have the same value to achieve interpolation.

Endpoint interpolating quadratic B-splines are shown in Figure 15.24. The
first two and last two B-splines are different than the uniform ones, Their expres-
sions can be derived through the use of the Cox-de Boor recurrence;

(1—#2 HHo<t<1,

0 otherwise.

hl..‘t{[hlj.il. l.z....;{"::' —

RLLTTY LT
‘,l"'“ .ln‘ » L i:,_
LA o ar Y
- iy
-~ *a, s
W
4

i " L

\J:"“\\ ey
0 1 2 a 4 i &

gy Yiy

Figure 15.24. Endpoint-interpolating quadratic (k =3) B-splines, for n = 8. The knot vector
is[0,0,0,1,2,34,5686,6] The first and last two B-splines are apariodic, while the middle four
ishown as dotted lines) are pericdic and identical lo the ones in Figure 15.20.

344 15. Curves

2u—3u? H0<t<1l u=t,
baapootz.) =431 —u)? f1<t<2 u=t-1,
0 otherwise,

15.6.4 NURBS

Despite all of the generality B-splines provide, there are some functions that can-
not be exactly represented using them. In particular, B-splines cannot represent
conic sections. To represent such curves, a ratio of two polynomials is used. Non-
uniform B-splines are used to represent both the numerator and the denominator.
The most general form of these are Non-Uniform Rational B-Splines, or NURBS
for short,

NURBS associate a scalar weight k; with every control point p; and use the
same B-splines for both:

M oing hipibige
Z:l=1 h:bi.k.t .

where b; ;. + are the B-splines with parameter & and knot vector t.

NURBS are very widely used 1o represent curves and surfaces in geometric
modeling because of the amazing versatility they provide, in addition to the useful
properties of B-splines.

flu) =

15.7 Summary

In this chapter, we have discussed a number of representations for free-form
curves. The most important ones for computer graphics are:

¢ Cardinal splines use a set of cubic pieces to interpolate control points, They
are generally preferred to interpolating polynomials because they are local
and easier to evaluate.

o Bézier curves approximalte their control points and have many useful prop-
erties and associated algorithms. For this reason, they are popular in graph-
ics applications,

B-spline curves represent the curve as a linear combination of B-spline
functions. They are general and have many useful properties such as being
bounded by their convex hull and being variation diminishing, B-splines
are often used when smooth curves are desired.

15.7. Summary 345

Notes

The problem of representing shapes mathematically is an entire field unto itself,
zenerally known as Geometric Modeling. Representing curves 1s just the begin-
ning and is generally a precursor to modeling surfaces and solids. A more thor-
ough discussion of curves can be found in most geometric modeling texts, see for
example Geometric Modeling (Mortenson, 1985) for a text that 1s acecessible o
computer graphics students. Many geometric modeling books specifically focus
on smooth curves and surfaces. Texts such as An Introduction ro Splines for Use
in Computer Graphics (Banels, Beatty, & Barsky, 1987), Curves and Surfaces for
CAGD: A Practical Guide (Farin, 2002) and Geometric Modeling with Splines:
An Introduetion (E. Cohen, Riesenfeld, & Elber, 2001} provide considerable detail
about curve and surface representations. Other books focus on the mathematics
of splines; A Practical Guide to Splines {De Boor, 2001) 15 a standard reference.

The history of the development of curve and surface representations is com-
plex, see the chapter by Farin in Handbook of Compuier Aided Geomerric De-
sign (Farin, Hoschek, & Kim, 2002} or the book on the subject An Introduction
fo NURBS: With Historical Perspective (D. F. Rogers, 2000) for a discussion.
Many ideas were independently developed by multiple groups who approached
the problems from different disciplines. Because of this, it can be difficult to at-
tribute ideas to a single person or to point at the “original” sources. It has also led
to a diversity of notation, terminology. and ways of introducing the concepts in
the literature,

15.7.1 Exercises

For Exercises |4, find the constraint matrix, the basis matrix, and the basis func-
tioms. To invert the matrices you can use 4 program such as MATLAR or OCTAVE
{a free MATLAB-like system),

I. A line segment: parameterized with py located 25% of the way along the
segment (v = (0.25), and py located 75% of the way along the segment.

2. A quadratic: parameterized with pg as the position of the beginning point
(1 = (1}, py, the first derivative at the beginning point, and ps, the second
derivative at the beginning point.

3. A cobic: its control points are equally spaced (pp has w = (0, py has u =
1/3, pz has u = 2/3, and p; has u = 1)

15. Curves

A quintic: {a degree five polynomial, so the matrices will be fi = 6) where py
is the beginning position, p; is the beginning derivative, pg is the middle
{u = (1.5) position, py is the first derivative at the middle, p is the position
at the end, and ps is the first derivative at the end.

The Lagrange Form (Equation 15.12) can be used to represent the interpo-
lating cubic of Exercise 3. Use it at several different parameter values o
confirm that it does produce the same results as the basis functions derived
in Exercise 3.

Devise an arc-length parameterization for the curve represented by the para-
metric function

flu) = (u,u?).

. Given the four control points of a segment of a Hermite spline, compute the

control points of an equivalent Bézier segment.

. Use the de Castijeau algorithm to evaluate the position of the cubic Bézier

curve with its control points at (0,00, (0,1}, (1.1} and (1,0} for parameter
values 1 = 0.5 and u = [.75. Drawing a sketch will help vou do this.

. Use the Cox { de Boor recurrence to derive Equation 15.16.

Michael Ashikhmin

16

Computer Animation

Animation is derived from the Latin anima and means the act, process, or result
of imparting life, interest, spirit, motion, or activity. Motion 1s a defining property
of life and much of the true art of animation is about how to tell a story, show
emotion, or even express subtle details of human character through motion, A
computer is a secondary tool for achieving these goals—it is a tool which a skillful
animator can use to help get the result he wants faster and without concentrating
on technicalities in which he is not interested. Animation without computers,
which 15 now often called “traditional™ animation, has a long and rich history of
its own which is continucusly being written by hundreds of people still active in
this art. As in any established field, some time-tested rules have been erystallized
which give general high-level guidance to how certain things should be done and
what should be avoided. These principles of traditional animation apply equally
to computer animation, and we will discuss some of them below.

The computer, however, is more than just a tool. In addition to making the
animator's main task less tedious, computers also add some truly unique abil-
ities that were simply not available or were extremely difficult to obtain be-
fore. Modern modeling tools allow the relatively easy creation of detailed three-
dimensional models, rendering algorithms can produce an impressive range of
appearances, from fully photorealistic to highly stylized, powerful numerical sim-
ulation algorithms can help to produce desired physics-based motion for partic-
ularly hard to animate objects, and motion capture systems give the ability to
record and use real-life motion. These developments led to an exploding use
of computer animation technigues in motion pictures and commercials, automo-

347

348 16. Computer Animation

tive design and architecture, medicine and scientific research among many other
areas. Completely new domains and applications have also appeared including
fully computer-animated feature films, vinual/augmented reality systems and, of
course, computer games,

Other chapters of this book cover many of the developments mentioned above
(for example, geometric modeling and rendering) more directly, Here, we will
provide an overview only of techniques and algorithms directly used to create and
manipulate motion. In particular, we will loosely distinguish and briefly describe
four main computer animation approaches:

+ Keyframing gives the most direct control to the animator who provides
necessary data at some moments in time and the computer fills in the rest.

o Procedural animation involves specially designed, often empirical, math-
ematical functions and procedures whose output resembles some particular
motion.

o Physics-based technigues solve differential equation of motion.

» Motion capture uses special equipment or technigues 1o record real-world
motion and then transfers this motion into that of computer models.

We do not touch upon the artistic side of the field at all here. In general, we can
not possibly do more here than just scratch the surface of the fascinating subject
of creating motion with a computer. We hope that readers truly interested in the
subject will continue their journey well beyond the material of this chapter.

16.1 Principles of Animation

In his seminal 1987 SIGGRAPH paper (Lasseter, 1987), John Lasseter brought
key principles developed as early as the 1930%s by traditional animators of Walt
Disney studios to the attention of the then-fledgling computer animation com-
munity. Twelve principles were mentioned: squash and stretch; riming. antic-
iparion; follow through and overlapping action; slow-in and slow-out; staging;
ares; secondary action; straight-ahead and pose-to-pose action; exaggeration;
solid drawing skill; appeal. Almost tlwo decades later, these tme-tested rules,
which can make a difference between a natural and entertaining animation and a
mechanistic-looking and boring one, are as important as ever. For computer ani-
mation, in addition, it is very important to balance control and flexibility given to
the animator with the full advantage of the computer’s abilities. Although these
principles are widely known, many factors affect how much attention is being

16.1. Principles of Animation 349

paid to these rules in practice. While a character animator working on a feature
film might spend many hours trying to follow some of these suggestions (for ex-
ample, tweaking his timing to be just right), many game designers tend to believe
that their time is better spent elsewhere.

16.1.1 Timing

Timing, or the speed of action, is at the heart of any animation. How fast things
happen affects the meaning of action, emotional state, and even perceived weight
of objects involved. Depending on its speed, the same action, a turn of a charac-
ter’s head from left to right, can mean anything from a reaction to being hit by a
heavy ohject to slowly seeking a book on a bookshelf or stretching a neck mus-
cle. It is very important to set timing appropriate for the specific action at hand.
Action should occupy enough time to be noticed while avoiding too slow and
potentially boring motions. For computer animation projects invelving recorded
sound, the sound provides a natural iming anchor to be followed. In fact, in most
productions, the actor’s voice is recorded first and the complete animation is then
synchronized to this recording. Since large and heavy objects tend to move slower
thian small and light ones (with less acceleration, to be more precise), timing can
be used to provide significant information about the weight of an object.

16.1.2 Action Layout

At any moment during an animation, it should be clear to the viewer what idea (ac-
tion, moeod, expression) is being presented. Good sraging, or high-level planning
of the action, should lead a viewer's eve to where the important action is currently
concentrated, effectively telling him “look at this, and now, look at this” without
using any words. Some familiarity with human perception can help us with this
difficult task. Since human visual systems react mostly to relative changes rather
than absolute values of stimuli, a sudden motion in a still environment or lack of
motion in some part of a busy scene naturally draws attention. The same action
presented so that the silhouette of the object is changing can often be much more
noticeable compared with a frontal arrangement (see Figure 16.1(a)).

On a slightly lower level, each action can be split into three parts: anticipation
{preparation for the action), the action itself and follow-through (termination of
the action). In many cases the action itself is the shortest part and, in some sense,
the least interesting. For example, kicking a football might involve extensive
preparation on the part of the kicker and long “visual tracking” of the departing

350 16. Computer Animation

Figure 16.1. Action layout; Left: Staging action properdy is crucial for bringing attention
1o currently important motion. The act of raising & hand would be prominent on the top but
harder to notice on the bottom. A change in nose length, on the contrary, might be completaly
invisible in the first case. Maote that this might be intentionally hidden, for example, to be
suddeniy revealed later. Meither arrangement is particukarly good if both motions shouid be
attended fo. Middle: The amount of anticipation can tell much about the following action.
The action which is about to follow (throwing a ball) is very short but it is clear what is about
to happen. The more wound up the character is, the faster the following action Is parcelved,
Without a proper amount of Right: The follow-through phase is especially important for
secondary appendages (hair) whose motion follows the leading part (head), The motion of
the head is very simple, but leads to non-trivial follow-through behavier of the hair itself. It
i impossible to create a natural animation without a follow-through phase and overlapping
action in this case, Figure by Patar Shirlay and Christing Villarruel,

ball with ample opportunities to show the stress of the moment, emotional state
of the kicker, and even the reaction to the expected result of the action, The action
itself (motion of the leg to kick the ball) is rather plain and takes just a fraction of
a second in this case, i

The goal of anticipation is to prepare the viewer to what is about to happen.
This becomes especially important if the action itself is very fast, greatly im-
portant, or extremely difficult. Creating a more extensive anticipation for such

I

16.1. Principles of Animation 351

actions serves 1o underscore these properties and, in case of fast events, makes
sure the action will not be missed (see Figure 16.1(b)).

In real life, the main action often causes one or more other overlapping ae-
tions. Different appendages or loose parts of the object typically drag behind the
main leading section and keep moving for a while in the follow-through part of
the main action as shown in Figure 16.1(c). Moreover, the next action often starts
before the previous one is completely over, A player might start running while
he is still tracking the ball he just kicked. Ignoring such natural flow is gener-
ally perceived as if there are pauses between actions and can result in robot-like
mechanical motion. While overlapping is necessary to keep the motion natural,
secondary action 15 often added by the animator to make motion more interesting
and achieve realistic complexity of the animation. It is important not to allow
secondary action to dominate the main action.

16.1.3 Animation Technigues

Several specific techniques can be used to make motion look more natural. The
most important one is probably squash and stretch which suggests to change the
shape of a moving ohject in a particular way as it moves. One would generally
stretch an object in the direction of motion and squash it when a force is ap-
plied to it, as demonstrated in Figure 16.2 for a classic animation of a bouncing
ball. It is important to preserve the total volume as this happens to avoid the il-
lusion of growing or shrinking of the object. The greater the speed of motion (or
the force), the more stretching (or squashing) is applied. Such deformations are
used for several reasons, For very fast motion, an object can move between two
sequential frames so quickly that there is no overlap between the object at the
time of the current frame and at the time of the previous frame which can lead
to strobing (a variant of aliasing). Having the object elongated in the direction of
motion can ensure better overlap and helps the eye to fight this unpleasant effect.
Stretching/squashing can also be used to show flexibility of the object with more
deformation applied for more pliable materials. If the object is intended to appear
as rigid, its shape is purposefully left the same when it moves,

MNatural motion rarely happens along straight lines, so this should generally be
avoided in animation and arcy should be used instead. Similarly, no real-world
motion can instantly change its speed—this would require an infinite amount of
force 1o be applied 1o an object. It is desirable to avoid such situations in anima-
tion as well. In particular, the motion should start and end gradually (slow in and
out). While hand-drawn animation is sometimes done via straighr-ahead action
with an animator starting at the first frame and drawing one frame after another in

® 9
+
Figure 16.2. Clas-

sic example of applying the
squash and stretch pringl-
ple. Mote that the volume
of the bouncing ball should
remain roughly the same
throughout the animation.

SR
Shmigid atmnd orer of kame crestion

Figure 16.3. Keyfram-
ing (lop) encourages da-
tailed action planning while
straight-ahead action (bot-
fom) leads to a more spon-
taneous resulf.

352 18. Computer Animation

sequence until the end, pose-to-poase action, also known as keyframing, is much
more suitable for computer animation, In this technique, animation is carefully
planned through a series of relatively sparsely spaced key frames with the rest
of the animation (in-between frames) filled in only after the keys are set (Fig-
ure 16.3). This allows more precise timing and allows the computer {0 take over
the most tedious part of the process—the creation of the in-between [rames—
using algorithms presented in the next section.

Almost any of the techniques outlined above can be used with some reason-
able amount of exaggeration W achieve greater artistic effect or underscore some
specific property of an action or a character, The ultimate goal is to achieve some-
thing the audience will want to see, something which is appealing. Extreme com-
plexity or too much symmetry in a character or action tends to be less appealing.
To create good results, a traditional animator needs solid drawing skills. Analo-
gously, a computer animator should certainly understand computer graphics and
have a solid knowledge of the wools he uses.

16.1.4 Animator Control vs. Automatic Methods

In traditional animation, the animator has complete control over all aspects of the
production process and nothing prevents the final product to be as it was planned
in every detail. The price paid for this flexibility is that every frame is created by
hand, leading to an extremely time- and labor-consuming enterprise. In computer
animation, there is a clear tradeoff between, on the one hand, giving an animator
more direct controd over the result, but asking him to contribute more work and,
on the other hand, relying on more automatic technigues which might require
setting just a few input parameters but offer little or no control over some of the
properties of the result. A good algorithm should provide sufficient Rexibility
while asking an animator only the information which is intuitive, easy to provide,
and which he himself feels is necessary for achieving the desired effect. While
perfect compliance with this requirement is unlikely in practice since it would
probably take something close to a mind-reading machine, we do encourage the
reader to evaluate any computer-animation technigue from the point of view of
providing such balance.

16.2 Keyframing

The term keyframing can be misleading when applied to 3D computer animation
since no actual completed frames (i.e,, images) are typically involved. At any
given moment, a 3D scepe being animated is specified by a sel of numbers: the

16.2. Keyframing 353

Frames
NEEEREROEEREERNE
¢t e e o e e -;H
g - | DN) A I-——| Time
5 @ ® ® ® >
: 9 e ® 0
3 e o e e
| -oto%i [ee]]
g o —§ fo— k- Mgy F)

Figure 16.4. Different patterns of setting keys (black circles above) can be used simultane-
ously for the same scene, It Is assumed thaf there are more frames before as well as after
this portion,

positions of centers of all objects, their RGB colors, the amount of scaling applied
to each object in each axis, modeling transformations between different parts of
a complex object, camera position and orientation, light sources intensity, ete. To
animate a scene, some subsel of these values have 1o change with time. One can,
of course, directly set these values at every frame, but this will not be particularly
efficient. Short of that, some number of important moments in time (key frames
t) can be chosen along the timeline of animation for each of the parameters and
values of this parameter (key values i) are set only for these selected frames,
We will call a combination (i, [of key frame and key value simply a key.
Key frames do not have to be the same for different parameters, but it is often
logical to set kevs at least for some of them simultaneously. For example, key
frames chosen for »-, y- and z-coordinates of a specific object might be set at
exactly the same frames forming a single position vector key (., pg). These key
frames, however, might be completely different from those chosen for the object's
orientation or color. The closer key frames are to each other. the more control the
animator has over the result; however the cost of doing more work of setting the
keys has to be assessed. It is, therefore, typical to have large spacing between
keys in parts of the animation which are relatively simple, concentrating them in
intervals where complex action occurs as shown in Figure 16.4.

Once the animator sets the key ({y, fi). the system has 1o compute values of
[for all other frames. Although we are ultimately interested only in a discrete set
of values, it is convenient to treat this as a classical interpolation problem which
fits a continuous animarion curve f{t) through a provided set of data points (Fig-
ure 16.5), Extensive discussion of curve fitting algorithms can be found in Chap-

Figure 16.5. A continuous
curve f{l) ks fit through the
keys provided by the ani-
mator aven though only val-
ues al frame positions are
of interest. The derivative
of this function gives the
speed of parameter change
and s at firs! determined
automatically by the fitling
procedurs,

354 16. Computer Animation

ter 15, and we will not repeat it here. Since the animator initially provides only the
keys and not the derivative (tangent), methods which compute all necessary infor-
mation directly from keys are preferable for animation. The speed of parameter
change along the curve is given by the derivative of the curve with respect to time
df /di. Therefore, to avoid sudden jumps in velocity, €' continuity is typically
necessary. A higher degree of continuity is typically not required from animation
curves, since the second derivative, which corresponds to acceleration or applied
foree, can experience very sudden changes in real-world sitnations (ball hitting a
solid wall), and higher derivatives do not directly correspond 1o any parameters of
physical motion. These consideration make Catmull-Rom splines one of the best
choices for imitial animation curve creation.

Most animation systems give the animator the ability to perform interactive
fine editing of this initial curve, including inserting more keys, adjusting existing
keys, or modifying automatically computed tangents. Another useful technique
which can help to tweak the shape of the curve is called TCB control (TCB stands
for tension, continuity and bias). The idea is to introduce three new parameters
which can be used o modify the shape of the curve near a key through coordinated
“ljustment of incoming and outgoing tangents at this point. For keys uniformly
spaced in time with distance &f between them, the standard Catmull-Rom ex-
pression for incoming 7" and outgoing T/"“! tangents at an internal key (t5, fi.)
can be rewrillen as

1 i
== EU&H —Je) + Ef.ﬁe = fe=1):
Modified tangents of a TCB spline are
; 1=1f}{1=e){l+b 1 =431 +e){l =1
Tin — (1 =) m:}{ +]{fk+l 84 (Illimfl{ r}m ~ o).
1=F)14e){1+h 1 =411l —=el—0
T = : HEL:H x]ifk+1—fk}+ { HEQ:H }ffa-“fk—ﬁL

The tension parameter ! controls the sharpness of the curve near the key by scaling
both incoming and outgoing tangents. Larger tangents (lower tension) lead to a
flatter curve shape near the key. Bias b allows the animator to selectively increase
the weight of a key's neighbors locally pulling the curve closer to a straight line
connecting the key with its left (b near 1, “overshooting™ the action) or right (b
near — 1, “undershooting” the action) neighbors, A non-zero value of continuity ¢
makes incoming and outgoing tangents different allowing the animator to create
kinks in the corve at the key value, Practically useful values of TCB parameters
are typically confined to the interval [—1; 1] with defaults ¢ = ¢ = b = () corre-
sponding to the original Catmull-Rom spline. Examples of possible curve shape
adjustments are shown in Figure 16.6.

16.2. Keyframing 355

L low tension, 1=0 A original spline, t=c=b=0 Lk high tension, t=0
e - .t
s k, - /
'l \ / \\ g \
.
o ow continuity, c<0 original spling, t=c=b=0 } ohconfindity 6=
L ¥ . = __/"_. _"x_‘
> /
/ N, 'z/ H, : ll_.-"' ."-._‘
§ % / \ / \
. ‘e
A low bias, b<d + original spline. t=c=b=0 A high bias, b=0
- o .
r _‘ __/ \ / I‘_
/ N £ % / 1
b1 . by '
[[. . - .

Figure 16.6. Ediling the default interpolating spling (middle column) using TCB contrals,
Mote that all keys remain at the same positions.

16.2.1 Motion Controls

So far, we have described how to control the shape of the animation curve through
key positioning and fine tweaking of tangent values at the keys, This, however,
is generally not sufficient when one would like to have control both over where
the object is moving, L.e., its path, and how fast it moves along this path. Given a
set of positions in space as keys, automatic curve-fitting techniques can fit a curve
through them, but resulting motion is only constrained by forcing the object to
arrive at a specified key position py atl the corresponding key frame ¢, and noth-
ing is directly said about the speed of motion between the keys. This can create
problems. For example, it an object moves along the z-axis with velocity 11 me-
ters per second for | second and then with | meter per second for ¥ seconds, it
will arrive at position & = 20 after 10 seconds thus satisfying animator’s keys
(0,00 and (10, 20). It is rather unlikely that this jerky motion was actually de-
sired, and uniform motion with speed 2 meters/second is probably closer to what
the animator wanted when setting these keys. Although typically not displaying

i
=3
wi=0 =i
A
L&
(w
J ;
TN
= 4
e
- -.
L Y
Figure 16.7. All three

maotions are along the same
20 path and satisly the set
of keys at the tips of the
black triangies. Tha tips of
the white triangles show ob-
ject position at At = 1 in-
tervals, Uniform speed of
mation between the keys
{top) might be closer o
what the animator wanted
but automatic fitting proce-
duras could result in aither
of the other two mations.

356 16. Computer Animation

such extreme behavior, polynomial curves resulting from standard fitting proce-
dures do exhibit non-uniform speed of motion between keys as demonstrated in
Figure 16.7. While this can be tolerable (within limits) for some parameters for
which the human visual system is not very good at determining non-uniformities
in the rate of change (such as color or even rate of rotation), we have to do bet-
ter for position p of the object where velocity directly comesponds to everyday
experience,

We will first distinguish curve parameterization used during the fitting proce-
dure from that used for animation. When a curve is fit through position keys, we
will write the result as a function p{u) of some parameter u. This will describe
the geometry of the curve in space. The arc length s is the physical length of the
curve. A natural way for the animator to control the motion along the now existing
curve is 1o specify an extra function s(t| which corresponds to how far along the
curve the object should be at any given lime. To get an actual position in space,
we need one more auxiliary function ufs) which computes a parameter value
for given arc length 5. The complete process of computing an object position for
a given time { is then given by composing these functions (see Figurel6.8):

pit) = plu(s(t))).

Several standard functions can be used as the distance-time function s(t).
One of the simplest is the linear function corresponding to constant velocity:
s(t) = vt with v = const. Another common example is the motion with con-
stant acceleration a (and initial speed vy) which 15 described by the parabolic
s(t) = vyt + at?/2. Since velocity is changing gradually here, this function
can help 1o model desirable ease-in and ease-out behavior, More generally, the

& fu us)
= / ulstfF——71 N = _.ﬂ_’-_liﬁml}
501 ﬂ-—ff—'-;-_,» — ’__/ [— \
/ vd ? y,
.. J . = Pl |
s(t) |
. - - - = e . | = J

Figure 16.8. To get position in space at a given time 1, one first utilizes user-specified motion
control to obtain the distance along the curve s{ f) and then compute the corespanding curve
parameter value u(s(f)). Previously fitted curve P{u) can now be used 1o find the position
Plu(s(1))).

16.2. Keyframing 357

slope of s(t) gives the velocity of motion with negative slope corresponding 1o
the motion backwards along the curve. To achieve most flexibility, the ability 1o
interactively edit s(¢) is typically provided to the animator by the animation sys-
tem. The distance-time function is not the only way Lo control motion. In some
cases it might be more convenient for the user to specify a velocity-time function
v{t) or even an acceleration-time function a{t}, Since these are correspondingly
first and second derivatives of s(f), to use these type of controls, the system first
recovers the distance-time function by integrating the user input (twice in the case
of a(t)).

The relationship between the curve parameter « and arc length s is established
autormnatically by the system. In practice. the system first determines arc length
dependance on parameter « (i.e., the inverse function s{u)). Using this function,
for any given & it is possible to solve the equation s(u) — 5 = 0 with unknown
obtaining «(S). For most curves, the function 2(1) can not be expressed in closed
analytic form and numerical integration is necessary (see Chapter 14). Standard
numerical rool-finding procedures (such as the Newton-Raphson method, for ex-
ample) can then be directly vsed to solve the equation s{u) — § = 0 for u,

An alternative technique is to approximate the curve itself as a set of linear
segments between points p,; computed at some set of sufficiently densely spaced
parameter values u,. One then creates a table of approximate arc lengths

s(ug) = Y _ iP5 — pj-all = s{ui-1) + [|ps = Pi-all-
_;|T."|

Since s(u) is a non-decreasing function of w, one can then find the interval con-
taining the value 5 by simple searching through the table (see Figure16.9). Linear
interpolation of the interval’s « end values is then performed to finally find u(S).
If greater precision is necessary, a few steps of the Newton-Raphson algorithm
with this value as the starting point can be applied.

16.2.2 Interpolating Rotation

The techniques presented above can be used 1o interpolate the keys set for most of
the parameters describing the scene. Three-dimensional rotation is one important
mation for which more specialized interpolation methods and representations are
common. The reason for this is that applying standard technigues to 3D rotations
often leads to serious practical problems. Rotation (a change in orientation of an
object) is the only motion other than translation which leaves the shape of the
object intact. It therefore plays a special role in animating rigid objects.

Figure 16.9. To cre-
ate a tabular version of
s{u), the curve can ba ap-
proximated by a number
of line segments connect-
ing points on the curve po-
sitioned st equal parame-
ter increments. The table
is searched to find the w-
intarval for a given 5. For
the curve above, for exam-
ple, the value of u corre-
sponding 1o the position of
S =6.5lies between v =06
and u=08,

i

Glmbal lock canfiguraton

Figure 16.11, In this

example, gimbal lock oc-
curs when a 80 degree
turn around axis £ is made,
Both X and Y rotations are
now perfarmed around the
same axis leading o the
loss of one degree of free-
dam.

358 16. Computer Animation

Figure 16.10. Three Euler angles can be used o spacify arbitrary object orentation through
a sequence of three rotations around coordinate axes embedded info the object (axis ¥
ahways points to the tip of the cona). Mote that each rotation is glven in a new coordinate
system, Fixed angle representation is very similar but the coordinate axes it uses are fixed
in space and do not rotate with the object.

There are several ways to specify the orientation of an object. First, trans-
formation matrices as described in Chapter 6 can be used. Unfortunately, naive
{element-by-element) interpolation of rotation matrices does not produce a correct
result. For example, the matrix “half-way” between 2D clock- and counterclock-
wise 90 degree rotation is the null matrix:

1[1} 1]+_{[u —1]_[[1 ﬂ]

21-1 0f "211 o] |0 0]

The correct result is, of course, the unit matrix corresponding to no rotation. Sec-
ond, one can specify arbitrary orientation as a sequence of exactly three rotations
around coordinate axes chosen in some specific order. These axes can be fixed in
space (fixed-angle representation) or embedded into the object therefore changing
after each rotation (Euler-angle representation as shown in Figure 16.10). These
three angles of rotation can be animated directly through standard keyframing,
but & subtle problem known as gimbal lock arises. Gimbal lock occurs if dur-
ing rotation one of the three rotation axes is by accident aligned with another,
thereby reducing by one the number of available degrees of freedom as shown in
Figure 16.11 for a physical device. This effect is more common than one mighi
think—a single 90 degree turn to the right (or left) can potentially put an object
into a gimbal lock. Finally, any orientation can be specified by choosing an appro-
priate axis in space and angle of rotation around this axis. While animating in this
representation is relatively straightforward, combining two rotations, i.e., finding
the axis and angle corresponding to a sequence of two rotations both represented
by axis and angle, is non-trivial. A special mathematical apparatus, guaternions

16.2. Keyframing 359

has been developed o make this representation suitable both for combining sev-
eral rotations into a single one and for ammation.

Given a 3D vector v = (.. z) and a scalar s, a quaternion q is formed by
combining the two into a four component object: g = [s = y z| = [3; v]. Several
new operations are then defined for guaternions. Quaternion addition simply sums
scalar and vector parts separately:

g1+ g2 = (81 +82; V1 + val.
Multiplication by a scalar a gives a new quaternion
aq = las: av].
More complex guaternion multiplication is defined as
gy - a = [3132 — ViVagi 51Vg + 8SpVy + v X V2]1

where x denotes a vector cross product. It is easy to see that, similar to matrices,
quaternion multiplication is associative, but not commutative. We will be inter-
ested mostly in normalized quaternions—those for which the quaternion norm
lgl = +/52 + v is equal to one. One final definition we need is that of an inverse
quaternion:

g = (1/lg|}s: —v].
To represent a rotation by angle ¢ around an axis passing through the origin
whose direction is given by the normalized vector n. a normalized guaternion

q = [cos(/2); sin(¢/2)n]

is formed. To rotate point p, one tums it into the quaternion ¢, = [0; p] and
computes the quaternion product

Qpy=q-Q-q "

which is guaranteed to have a zero scalar part and the rotated point as its vector
part. Composite rotation is given simply by the product of quaternions represent-
ing each of the separate rotation steps. To animate with guaternions, one can treat
them as points in a four-dimensional space and set keys directly in this space. To
keep quaternions normalized, one should, strictly speaking, restrict interpolation
procedures to a unit sphere (a 3D object) in this 4D space. However, a spherical
version of even linear interpolation (often called slerp) already results in ruther
unpleasant math. Simple 4D linear interpolation {ollowed by projection onto the
unit sphere shown in Figure 16.12 is much simpler and often sufficient in practice,
Smoother results can be obtained via repeated application of a linear interpolation
procedure using the de Casteljau algorithin,

B

Figure 16.12. Inter-
polating quaternions should
be done on the surface of
a 30 unit sphera embed-
ded in 40 space. How-
ever, much simpler imerpo-
lation along a 40 straight
line {open circles) followed
by re-projection of the re-
suits oo the sphare (black
circles) is often sufficient.

| Odginalshaps Benz |

Tamar Twiis

as

Figure 16.13. Popular ex-
amples of global deforma-
tions. Bending &nd twist an-
gies as well as the degreeg
of taper can all be animated
o achieva dynamic shape
change,

Pls,u,t) =

360 16. Computer Animation

16.3 Deformations

Although techniques for object deformation might be more properly treated as
modeling tools, they are traditionally discussed together with animation methods.
Probably the simplest example of an operation which changes object shape is a
non-uniform scaling, More generally, some function can be applied to local co-
ordinates of all points specifying the object (i.e., vertices of a triangular mesh
or control polygon of a spline surface), repositioning these points and creating a
new shape: p' = f(p.~) where < is a vector of parameters used by the defarma-
tion function. Choosing differemt f {and combining them by applying one after
another) can help to create very interesting deformations, Examples of useful
simple functions include bend, twist, and taper which are shown in Figure 16.13.
Animating shape change is very easy in this case by keyframing the paramelers
of the deformation function. Disadvantages of this technigue include difficulty of
choosing the mathematical function for some non-standard deformations and the
fact that the resulting deformation is global in the sense that the complete object,
and not just some part of iL, is reshaped.

To deform an object locally while providing more direct control over the re-
sult, one can choose a single vertex, move it to a new location and adjust vertices
within some neighborhood 1o follow the seed vertex, The area affected by the de-
formation and the specific amount of displacement in different parts of the ohject
are controlled by an attenuation function which decreases with distance (typically
computed over the object’s surface) to the seed vertex. Seed vertex motion can be
keyframed to produce animated shape change.

A more general deformation technique is called free-form deformation (FFD)
(Sederberg & Parry, 1986). A local (in most cases rectilinear) coordinate grid
is first established to encapsulate the part of the object to be deformed, and co-
ordinates (s, ¢, 1) of all relevant points are computed with respect to this grid.
The user then freely reshapes the grid of lattice points Py into a new distorted
lattice P;jk {Figure 16.14), The object is reconstructed using coordinates com-
puted in the original undistorted grid in the trivariate analog of Bézier interpolants
(see Chapter 15) with distorted lattice points Py, serving as control points in this
expression:

= J 5 M J) i .ii:

where L, M, NV are maximum indices of lattice points in each dimension. In ef-
fect, the lattice serves as a low resolution version of the object for the purpose of
deformation, allowing for a smooth shape change of an arbitrarily complex ob-

16.4. Character Animation 361

ject through a relatively small number of imtuitive adjustments. FFD lattices can
themselves be treated as regular objects by the system and can be transformed, an-
imated, and even further deformed if necessary, leading to corresponding changes
in the object to which the lattice is attached, For example, moving a deforma-
tion ool consisting of the original lattice and distorted lattice representing a bulge
across an object results in a bulge moving across the object,

16.4 Character Animation

Animation of articulated figures is most often performed through a combination
of keyframing and specialized deformation techniques. The character model in-
tended for animation typically consists of at least two main layers as shown in
Figure 16.15. The motion of a highly detailed surface representing the outer shell
or skin of the character is what the viewer will eventually see in the final prod-
uct. The skeleton underneath it is a hierarchical structure (a tree) of joints which
provides a kinematic model of the figure and is used exclusively for animation,
In some cases, additional intermediate layer(s) roughly corresponding to muscles
are inserted between the skeleton and the skin.

—=— skin —a

skeleton
il
L‘-

L

¥

Figure 16.15. (Leff) A hierarchy of joints, a skeleton, serves as a kinematic abstraction of
the character; (middle) repositioning the skeleton deforms a separate skin object attached
fo it; (right) & tree data structure is used to reprasent the skelaton. For compactness, the
intermal structure of several nodes (s hidden (they are identical to a corrasponding sibling).

Figure 16,14, Adjusting
the FFD lattice results in the
deformation of the object.

362 16. Computer Animation

Each of the skeleton's joints acts as o parent for the hierarchy below it. The
root represents the whole character and is positioned directly in the world coor-
dinate system. If a local transformation matrix which relates a joint to its parent
in the hierarchy is available, one can obtain a transformation which relates local
space of any joint to the world system (i.e., the system of the root) by simply con-
catenating transformations along the path from the root to the joint, To evaluate
the whole skeleton (i.e., find position and orientation of all joints), a depth-first
traversal of the complete tree of joints is performed. A transformation stack is a
natural data structure to help with this task, While traversing down the tree, the
current composite matrix is pushed on the stack and new one is created by mul-
tiplying the current matrix with the one stored at the joint, When backtracking
to the parent, this extra transformation should be undone before another branch is
visited; this is easily done by simply popping the stack. Although this general and
simple technique for evaluating hierarchies is used throughout computer graphics,
in animation (and robotics) it is given a special name—/forward kinematics (FK),
While general representations for all transformations can be used, it is common to
use specialized sets of parameters, such as link lengths or joint angles, to specify
skeletons. To animate with forward kinematics, rotational parameters of all joints
are manipulated directly. The technique also allows the animator to change the
distance between joints (link lengths), but one should be aware that this corre-
sponds to limb stretching and can often look rather unnatural,

Forward kinematics requires the user to set parameters for all joints involved
in the motion (Figure 16,16 (top)). Most of these joints, however, belong to in-

Adtar hip rotation

\Ar knee rotation
ey

il -

Original
I solver connaction | AT

_il f hip &nd knes [oint angles
\\ comgued automatically

Eflecior maotion _4 ,f

Figure 16.16. Forward kinematics (top) requires the animator to put all joints into comect
position. In inverse kinematic (bottom), parameters of some interal joints are computad
based on desired end effector mation.

16.4. Character Animation 363

ternal nodes of the hierarchy, and their motion is typically not something the
animator wants to worry about. In most situations, the animator just wants them
to move naturally “on their own,” and one is much more interested in specify-
ing the behavior of the end point of a joint chain, which typically corresponds o
samething performing a specific action, such as an ankle or a tip of a finger. The
animator would rather have parameters of all internal joints be determined from
the motion of the end effector automatically by the system. Inverse kinematics
(TK) allows us to do just that (see Figure 16.16(bottom)).

Let x be the position of the end effector and o be the vector of purameters
needed to specify all internal joints along the chain from the root to the final joint.
Sometimes the orientation of the final joint is also directly set by the animator, in
which case we assume that the corresponding variables are included in the vector
*. For simplicity, however, we will write all specific expressions for the vector:

x = (z1, 2, 23)" .

Since each of the variables in x is a function of «v, it can be written as a vecior
equation x = F{x). If we change the internal joint parameters by a small amount
der, a resulting change dx in the position of the end effector can be approximately
written as

ifF
ix = —dba, (16.1)
iy
where % is the matrix of partial derivatives called the Jacobian:
an 8h afy
da ?;”: ﬂ“f ',_J_a‘_Tr_.'L
ey ks e ey,

At each moment in time, we know the desired position of the end effector (set by
the animator) and, of course, the effector’s current position, Subtracting the two,
we will get the desired adjustment dx. Elements of the Jacobian matrix are related
to changes in a coordinate of the end effector when a particular internal parameter
is changed while others remain fixed {see Figure 16.17). These elements can
be computed for any given skeleton configuration using geometric relationships.
The only remaining unknowns in the system of equations 6.1 are the changes in
internal parameters ri, Once we solve for them. we update o = ni+da which gives
all the necessary information for the FK procedure to reposition the skeleton,
Unfortunately, the system 16.1 can not usually be solved analytically and,
moreover, it 1% in most cases underconstrained, i.¢., the number of unknown inter-
nal joint parameters i exceeds the number of variables in vector x. This means
that different motions of the skeleton can result in the same motion of the end

e, X
AX

Figure 16.17. Partial
dervative ox/doyne I8
given by the [imit of
AxfMoypes. Effactor dis-
placement is computed
whila all joints, excapt the
knee, are kept fixed.

Figure 16.18. hul-
fiple configurations of in-
ternal joints can result in
the same effector position.
(Top) disjoint “flipped” solu-
tioms; (bottom) & continuwam
of solutions.

~o*
\ L 2

Figure 16.20.

Rigid skinning assigns siun
vartices to a specific joint.
Those belonging to the &l-
bow joint are shown in
black; Bottomn: Soft skin-
ning can blend the in-
fluence of several |oints,
Weighis for the elbow joint
are shown (lighter = greater
weight). Mote smoother

skin deformation of the in-
ner part af the skin near the
jovint.

364 16. Computer Animation

effector. Some examples are shown on Figure 16,18, Many ways of obtaining
specific solutien for such systems are available, including those taking into ac-
count natural constraints needed for some real-life joints (bending a knee only in
one direction, for example). One should also remember that the computed Jaco-
bian matrix is valid only for one specific configuration, and it has 1o be updated as
the skeleton moves. The complete LK framework is presented in Figure 16.19. Of
course, the root joint for 1K does not have to be the root of the whole hierarchy,
and multiple IK solvers can be applied to independent parts of the skeleton. For
example, one can use separate solvers for right and left feet and yet another one
to help animate grasping with the right hand, each with its own root.
A combination of FK

and IK approaches is typ-
ically used to animate the |

i

skeleton. Many com- O shsseton configuration

mon motions (walking or !

running cycles, grasping, Wﬂwmﬂ

reaching, etc.) exhibit well-

known patterns of mutual | [satve equation 1.1]-—I Upﬂmnmmhls-] A

joint motion making it pos- | nerwe walues for internal jant parameters

sible to quickly creale nal- | ooy lrwand kinemaiic o raposiion skeiston |

urally looking motion or | r"wﬂ@mm

even use a library of such

“clips” The anin::mnr then [tk of cbwbs gwion I_E'[mﬂﬁﬂwmmmﬁj
adjusts this generic result YER, dong

sccording o Hie physical Figure 16.19. A diagram of the inverse kinematic
parameters of the character aigorithm.

and also to give it more in-
dividuality.

When a skeleton changes its position, it acts as a special type of deformer
applied to the skin of the character. The motion is transferred to this surface by
assigning each skin vertex one (rigid skinning) or more (smooth skinning) joints
as drivers (see Figure 16.20). In the first case. a skin vertex is simply frozen
into the local space of the corresponding joint, which can be the one nearest in
space or one chosen directly by the user. The vertex then repeats whatever mo-
tion this joint experiences, and its position in world coordinates is determined by
standard FK procedure. Although it is simple, rigid skinning makes it difficult
to obtain sufficiently smooth skin deformation in areas near the joints or also for
mare subtle effects resembling breathing or muscle action. Additional specialized
deformers called flexors can be used for this purpose. In smooth skinning, several
Joints can influence a skin vertex according to some weight assigned by the ani-

16.4. Character Animation 385

mator, providing more detailed control over the results. Displacement vectors, d;,
suggested by different joints affecting a given skin vertex (each again computed
with standard FK) are averaged according to their weights w; to compute the fi-
nal displacement of the vertex d = % w,d;. Normalized weights (3> w; = 1)
are the most common but not fundamentally necessary. Setting smooth skinning
weights o achieve the desired etfect is not easy and requires significant skill from
the animator,

16.4.1 Facial Animation

Skeletons are well suited for creating most motions of a character’s body, but they
are not very convenient for realistic facial animation. The reason is that the skin
of a human face is moved by muscles directly attached to it contrary to other parts
of the body where the primary objective of the muscles is to move the bones of
the skeleton and any skin deformation is a secondary outcome. The result of this
facial anatomical arrangement is a very rich set of dynamic facial expressions
humans use as one of the main instruments of communication, We are all very
well trained to recognize such facial variations and can easily notice any unnatural
appearance. This not only puts special demands on the animator but also requires
' a high-resolution geometric model of the face and, if photorealism is desired,
accurate skin reflection properties and textures.

While it is possible to set key poses of the face vertex-by-vertex and inter-
polate between them or directly simulate the behavior of the underlying muscle
structure using physics-based technigues (see Section 16.5 below), more special-
. ized high-level approaches also exist. The static shape of a specific face can be
characterized by a relatively small set of so-called conformational parameters
{overall scale, distance from the eye to the forehead. length of the nose, width of
the jaws, etc.) which are used to morph a generic face model into one with individ-
ual features. An additional set of expressive parameters can be used o describe
the dynamic shape of the face for animation. Examples include rigid rotation of
the head, how wide the eyes are open, movement of some feature point from its
static position, etc. These are chosen so that most of the interesting expressions
can be obtained through some combination of parameter adjusiments, therefore,
allowing a face to be animated via standard keyframing. To achieve a higher level
of control, one can use expressive parameters to create a set of expressions corre-
sponding to common emotions {neutral, sadness, happiness, anger, surprise, eic.)
and then blend these key poses to obtain a “slightly sad™ or “angrily surprised”
face. Similar techniques can be used to perform lip-synch animation, but key
poses in this case correspond to different phonemes. Instead of using a sequence

Figure 16.21. Optical
motion capture; markers
altached 1o a perormer's
body allow skeletal mation
to be extracted. Image
courfesy of Motlon Analysis
Corp.

366 16. Computer Animation

of static expressions o describe a dynamic one, the Facial Action Coding Sys-
tem (FACS) (Eckman & Friesen, 1978) decomposes dynamic facial expressions
directly into a sum of elementary motions called action units (AUs). The set of
Alls is based on extensive psychological research and includes such movements
as raising the inner brow, wrinkling the nose, stretching lips, etc. Combining Alls
can be used to synthesize a necessary expression.

16.4.2 Motion Capture

Even with the help of the techniques described above, creating realistic-looking
character animation from scratch remains a daunting task. 1t is therefore only
natural that much attention is directed twards technigues which record an actor's
motion in the real world and then apply it to computer-generated characters, Two
main classes of such motion caprere (MC) technigues exist: electromagnetic and
optical.

In electromagnetic motion capture, an electromagnetic sensor directly mea-
sures its position (and possibly orientation) in 3D often providing the captured
results in real time. Disadvantages of this technique include significant equip-
ment cost, possible interference from nearby metal objects, and noticeable size
of sensors and batteries which can be an obstacle in performing high-amplitude
motions. In optical MC, small colored markers are used instead of active sensors
making it a much less intrusive procedure. Figure 16.21 shows the operation of
such a system. In the most basic arrangement, the motion is recorded by two cali-
brated video cameras, and simple triangulation is used 1o extract the marker’s 3D
position. More advanced computer vision algorthms used for accurate tracking
of multiple markers from video are computationally expensive, so, in most cases,
such processing is done offline. Optical tracking is generally less robust than
electromagnetic. Oceclusion of a given marker in some frames, possible misiden-
tification of markers, and noise in images are just a few of the common problem
which have 1o be addressed. Introducing more cameras observing the motion from
different directions improves both accuracy and robustness, but this approach is
more expensive and it takes longer to process such data. Optical MC becomes
more attractive as available computational power increases and betier compuier
vision algorithms are developed. Because of low impact nature of markers, opti-
cal methods are suitable for delicate facial motion capture and can also be used
with ohjects other than humans—for example, animals or even tree branches in
the wind,

With several sensors or markers attached to a performer’s body, a set of time-
dependant 3D positions of some collection of points can be recorded. These track-

16.5. Physics-Based Animation 367

ing locations are commonly chosen near joints, but, of course, they still lic on skin
surface and not at points where actual bones meet, Therefore, some additional
care and a bit of extra processing is necessary to convert recorded positions into
those of the physical skeleton joints. For example, putting two markers on oppo-
site sides of the elbow or ankle allows the system to obtain better joint position
by averaging locations of the two markers. Without such extra care, very notice-
able artifacts can appear due to offset joint positions as well as inherent noise
and insufficient measurement accuracy, Because of physical inaccuracy during
motion, for example, character limbs can loose contact with objects they are sup-
posed to touch during walking or grasping, problems like foot-sliding (skating)
of the skeleton can occur. Most of these problems can be corrected by using in-
verse kinematics techniques which can explicitly force the required behavior of
the limb’s end.

Recovered joint positions can new be directly applied to the skeleton of a
compuier-generated character, This procedure assumes that the physical dimen-
sions of the character are identical to those of the performer. Retargeting recorded
motion to a different character and, more generally, editing MC data, requires
significant care to satisfy necessary constraints (such as maintaining feet on the
ground or not allowing an elbow to bend backwards) and preserve an overall nat-
ural appearance of the modified motion. Generally, the greater the desired change
from the original, the less likely it will be possible to maintain the quality of the
result. An interesting approach to the problem is to record a large collection of
motions and stich together short clips from this library to obtain desired move-
ment. Although this topic is currently a very active research area, limited ability
to adjust the recorded motion to the animator’s needs remains cne of the main
disadvantages of motion capture technigque.

16.5 Physics-Based Animation

The world around us is governed by physical laws many of which can be formal-
ized as sets of partial or, in some simpler cases, ordinary differential equations.
Omne of the original applications of computers was (and remains) solving such
equations, It is therefore only natural to attemnpt to use numerical technigues
developed over the several past decades to obtain realistic motion for computer
animation,

Because of its relative complexity and significant cost, physics-based anima-
tion is most commonly used in situations when other technigues are either un-
available or do not produce sufficiently realistic results. Prime examples include

-l—
o "W
Figure 16.22. Real-

istic cloth simulation is of-
tan performed with physics-
based methods. In this ex-
ample, forces are due to
collisions and gravity.

368 16. Computer Animation

animation of fluids (which includes many gaseous phase phenomena described
by the same equations—smoke, clouds, fire, etc.), cloth simulation (an exam-
ple is shown in Figore 16.22), rigid body motion, and accurate deformation of
elastic objects. Governing equations and details of commonly used numerical
approaches are different in each of these cases, but many fundamental ideas and
difficulties remain applicable across applications. Many methods for numerically
solving ODEs and PDEs exist but discussing them in details is far beyond the
scope of this book. To give the reader a flavor of physics-based techniques and
some of the issues involved, we will briefly mention here only the finite differ-
ence approach—one of the conceptually simplest and most popular families of
algorithms which has been applied to most, if not all, differential equations en-
countered in animation.

The key idea of this approach is to replace a differential equation with its dis-
crete analog—a difference equation. To do this, the continuous domain of interes!
is represented by a finite set of points at which the solution will be computed. In
the simplest case, these are defined on a uniform rectangular grid as shown in Fig-
ure 16.23, Every derivative present in the original ODE or PDE is then replaced
by its approximation through function values at grid points. One way of doing
this is to subtract the function value at a given point from the function value for
its neighboring point on the grid:

dfit) _ Af _ flt+At) - ffﬂmﬂﬂz.t}gﬂ_f{w+ﬂr,ﬂ~ﬂx.t}
dt = At At dr Ar : “H‘}

|
|
|
|
|

Figure 16.23. Two possible difference schemes for an eguation involving derivatives df/ax
and Af/dt {Leff} An explicit scheme expresses unknown values (open circles) only through
known values at the currant (black circles) and possibly past (gray circles) time; (Right) Im-
plicit schemes mix known and unknown values in a single aquation making it necessary to
solve all such equations as a system. For both schemes, infarmation about values on tha
right boundary is neaded to close the process.

16.5. Physics-Based Animation 369

These expressions are, of course, not the only way. One can, for example, use
f(t — At) instead of f{t) above and divide by 2At. For an equation containing
a time derivative, it is now possible to propagate values of an unknown function
forward in time in a sequence of Af-size steps by solving the system of difference
equations (one at each spatial location) for unknown f(f + At). Some initial
conditions, i.e., values of the unknown function at ¢ = (), are necessary Lo start the
process. Other information, such as values on the boundary of the domain, might
also be required depending on the specific problem.

The computation of f{f+4 At) can be done easily for so called explicit schemes
when all other values present are taken at the current time and the only unknown
in the corresponding difference equation f(f + At} is expressed through these
known values, Implicir schemes mix values at current and future times and might
use, for example,

flz+ Ax.t + At) — flz. t + At)
Ax

as an approximation of %} In this case one has to solve a system of algebraic
equations at each step.

The choice of difference scheme can dramatically affect all aspects of the
algorithm, The most obvious among them is accuracy. In the limit At — 0
or &x — {0, expressions of the type in Equation [6.2 are exact, but for finite
step size some schemes allow better approximation of the derivative than others.
Stabiliry of a difference scheme is related to how fast numerical errors, which are
always present in practice, can grow with time. For stable schemes this growth is
bounded, while for unstable ones it is exponential and can quickly overwhelm the
solution one seeks (see Figure 16.24). It is important to realize that while some
inaccuracy in the solution is tolerable (and, in fact, accuracy demanded in physics
and engineering is rarely needed for animation), an unstable result is completely
meaningless, and one should avoid using unstable schemes. Generally, explicit
schemes are either unstable or can become unstable at larger step sizes while
implicit ones are unconditionally stable. Implicit schemes allows greater step size
{and, therefore, fewer steps) which is why they are popular despite the need to
solve a system of algebraic equations at each step. Explicit schemes are attractive
because of their simplicity if their stability conditions can be satisfied, Developing
a good difference scheme and corresponding algorithm for a specific problem is
not easy, and for most standard situations it is well advised to vuse an existing
method, Ample literature discussing details of these techniques is available.

One should remember that, in many cases. just computing all necessary terms
in the equation is a difficult and time-consuming task on its own. In rigid body
or cloth simulation, for example, most of the forces acting on the system are due

it unssabia

Flgure 16.24. An unsta-
ble solution might follow the
exact one initially, but can
deviate arbitrarily far from it
with time. Accuracy of a
stable solution might still be
Insufficient far a specific ap-
plication.

370 16. Computer Animation

to collisions among objects. At each step during animation, one therefore has to
solve a purely geometric, but very non-trivial, problem of collision detection, In
such conditions, schemes which require fewer evaluations of such forces might
provide significant computational savings.

Although the result of solving appropriate time-dependant equations gives
very realistic motion, this approach has its limitations. First of all, it is very
hard to control the result of physics-based animation. Fundamental mathematical
properties of these equations state that once the initial conditions are set, the solu-
tion is uniguely defined. This does not leave much room for animator input and, if
the result is not satisfactory for some reason, one has only a few options. They are
mostly limited to adjusting initial condition used, changing physical properties of
the system, or even modifying the equations themselves by introducing artificial
terms intended o “drive” the solution in the direction the animator wants. Making
such changes requires significant skill as well as understanding of the underlying
physics and, ideally, numerical methods. Without this knowledge, the realism
provided by physics-based animation can be destroyed or severe numerical prob-
lems might appear.

16.6 Procedural Techniques

Imagine that one could write (and implement on a computer) a mathematical func-
tion which outputs precisely the desired motion given some animator guidance.
Physics-based techniques outlined above can be treated as a special case of such
an approach when the “function” involved is the procedure to solve a particular
differential equation and “guidance™ is the set of initial and boundary conditions,
extra equation Lerms, ele.

However, if we are only concerned with the final result, we do not have io
follow a physics-based approach. For example, a simple constant amplitude
wave on the sorface of a lake can be directly created by applying the function
flx.t) = Acos{wt — kx + ¢) with constant frequency w, wave vector k and
phase ¢ to get displacement at the 2D point x at time £, A collection of such
waves with random phases and appropriately chosen amplitudes, frequencies, and
wave vectors can result in a very realistic animation of the surface of water with-
out explicitly solving any fluid dynamics equations, It turns out that other rather
simple mathematical functions can also create very interesting patterns or objects.
Several such functions, most based on lattice noises, have been described in Chap-
ter 11. Adding time dependance to these functions allows us to animate certain
complex phenomena much easier and cheaper than with physics-based technigues

16.6. Procedural Techniques an

while maintaining very high visual quality of the results. If noise(x) is the un-
derlying pattern-generating function, one can create a time-dependant variant of it
by moving the argument position through the lattice. The simplest case is motion
with constant speed; fimenpise(x, t) =noise(x + vit), but more complex motion
through the lattice is, of course, also possible and, in fact, more common. One
such path, a spiral, is shown in Figure 16.25. Another approach is to animate pa-
rameters used to generate the neise function. This is especially appropriate if the
appearance changes significantly with time—a cloud becoming more turbulent,
for example. In this way one can animate the dynamic process of formation of
clouds using the function which generates static ones.

For some procedural technigques, time dependance is a more integral compo-
nent. The simplest cellular automata operate on a 2D rectangular prid where
a binary value is stored at each location (cell), To create a time varying pat-
tern, some user-provided rules for modifying these values are repeatedly applied.
Rules typically involve some set of conditions on the current value and that of the
cell’s neighbors. For example, the rules of the popular 2D Game of Life cellular
automaton invented in 1970 by British mathematician John Conway are:

I. A dead cell (i.e., binary value at a given location is () with exactly three
live neighbors becomes a live cell (i.e., its value set to 1);

2. A live cell with two or three live neighbors stays alive;
3. In all other cases, a cell dies or remains dead.

Once the rules are applied to all grid locations, a new pattern is created and a
new evolution cycle can be started. Three sample snapshots of the live cell distri-
bution at different times are shown in Figure 16.26, More sophisticated automata

Figure 16.26. Several (non-consecutive) stages in the evolution of a Game of Life automa-
ton. Live cells are shown in black. Stable objects, oscillators, travelling patterns, and many
ather interesting constructions can result from the application of very simple rules. Figure
created using a program by Alan Hensel,

2L
1% (Ji |

“ed |

Figure 16.25. A path
through the cube defin-
ing procedural noise is tra-
versed o animate the re-
sulting pattarn.

Figure 16.27. Con-
sacutive derivation steps
using a simple L-system,
Capital lefters denaote
nan-terminals and illustrate
positicns at which corre-
sponding non-terminal will
be expanded. Thay are not
part of the actual output.

a7z 16. Computer Animation

simultaneously operate on several 3D grids of possibly floating point values and
can be used for modeling dynamics of clouds and other gaseous phenomena or
bivlogical systems for which this apparatus was originally invented (note the ter-
minology). Surprising pattern complexity can arise from just a few well-chosen
rules, but how Lo write such rules to create the desired behavior is often not obvi-
ous, This is a common problem with procedural technigues: there is only limited,
if any, guidance on how to create new procedures or even adjust parameters of
existing ones, Therefore, a lot of tweaking and learning by trial-and-error (“by
experience”) is usually needed to unlock the full potential of procedural methods.

Another interesting approach which was also originally developed to describe
biological objects is the technigue called L-systems (after the name of their origi-
nal inventor, Astnd Lindenmayer). This approach is based on grammars or sets of
recursive rules for rewriting strings of symbols, There are two types of symbols:
terminal symbols stand for elements of something we want to represent with a
grammar. Depending on their meaning, grammars can describe structure of trees
and bushes, buildings and whole cities, or programming and natural languages.
In animation, L-systems are most popular for representing plants and correspond-
ing terminals are instructions to the geometric modeling system: put a leaf (or a
branch) at a current position—we will use the symbol @ and just draw a circle,
move current position forward by some number of units (symbol [, turn current
direction 60 degrees around world Z-axis (symbol +), pop (symbol [} or push
{symbol |} current position/orientation, et¢. Auxiliary nonterminal symbols (de-
noted by capital letters) have only semantic rather than any direct meaning. They
are intended to be eventually rewritten through terminals. We start from the spe-
cial nonterminal start symbol 5 and keep applying grammar rules to the current
string in parallel, i.e., replace all nonterminals currently present to get the new
string, until we end up with a siring containing only terminals and no more sub-
stitution 15 therefore possible. This siring of modeling instructions is then used o
output the actual geometry. For example, a set of rules (productions)

§—=4
A= [+B]fA
A—B
B— B
B — o
might result in the following sequence of rewriting steps demonstrated in Fig-
ure 16.27
§+— Ar— [+B|fAr— [+fB|f[+B|fAr—

[+ff@)f[+fB|fB — [+[fa]f[+ffalffG

16.7. Groups of Objects 373

As shown above, there are typically many different productions for the same non-
terminal allowing the generation of many different objects with the same gram-
mar. The choice of which rule to apply can depend on which symbols are located
next to the one being replaced (context-sensitivity) or can be performed at ran-
dom with some assigned probability for each rule (stochastic L-systems). More
complex rules can model interaction with the environment, such as pruning to a
particular shape, and parameters can be associated with symbeols to control geo-
metric commands issued.

L-systems already capture plant topology changes with time: each interme-
diate string obtained in the rewriting process can be interpreted as a “younger”
version of the plant (see Figure 16.27). For more significant changes, different
productions can be in etfect at different times allowing the structure of the plant
to change significantly as it grows. A voung tree, for example, produces a lot of
new branches while an older one branches only moderately.

Wery realistic plant models have been created with L-systems. However, as
with most procedural techniques, one needs some ¢xperience to meaningfully
apply existing L-systems, and writing new grammars to capture some desired
effect is certainly not easy.

16.7 Groups of Objects

To animate multiple objects one can, of course, simply apply standard technigues
outlined above to each of them. This works reasonably well for a moderate num-
ber of independent objects whose desired motion is known in advance. However,
in many cases, some kind of coordinated action in a dynamic environment is nec-
essary, If only a few objects are involved, the animator can use an artificial intel-
ligence {Al)-based system o automatically determine immediate tasks for each
object based on some high-level goal, plan necessary motion, and execute the
plan. Many modern games use such aulonomous objects 10 creale smarl monsters
or player's collaborators.

Interestingly, as the number of objects in a group grows from just a few to
several dozens, hundreds, and thousands, individual members of a group must
have only very limited “intelligence™ in order for the group as a whole to exhibit
what looks like coordinated goal-driven motion, It tumns out that this flocking
is emergent behavior which can arise as a result of limited interaction of group
members with just a few of their closest neighbors (Reynolds, 1987). Flocking
should be familiar to anyone who has observed the fascinatingly synchronized
motion of a flock of birds or a school of fish. The technigue can also be used to
control groups of animals moying over terrain or even a human crowd,

374 16. Computer Animation
-\-"\-\.H : |I
% \\\ c:,ul].ijicl:n avoidance goal
N physical forces | g _ steering
_ L‘h]lmun tvidance \ b 1 LA
a.« = w.'!ncnry malchm,g navigation module
/ Y | Bral iz
|I (\.;'f?"ﬂnck centering gaul [=>— | physical comstraints desired velocity
| i | “w '
[!] | pilot module
| .-'f'. | pravity |
=] ' L i i
\ f/}"b‘ﬁj . l f::ﬂSlb_ll: velocity
):f;/ // -;s‘éﬁffﬁ / | flight module |
’ g et
i S e L
AN jffzj i, boid control adjustments

Figure 16.28. (Left] Individual flock member (boid) can experience several urges of differant
importance (shown Dy line thickness) which have to be negotiated into a single velocity vec-
tor. A boid is aware of only its limited neighborhood (circla). (Right) Boid contral is commaoniy
implemented as three separate modules.,

At any given moment, the motion of a member of a group, often called boid
when applied to flocks, is the result of balancing several often contradictory ten-
dencies, each of which suggests its own velocity vector (see Figure 16.28). First,
there are external physical forces I acting on the boid, such as gravity or wind,
New velocity due to those forces can be computed directly through Newton’s law
as

vEhusies — ¢ 4 + FAL/m.

L T

Second, a boid should react to global environment and to the behavior of other
group members. Collision avoidance is one of the main results of such interac-
tion, It 1s crucial for flocking that each group member has only limited field of
view, and therefore is aware only of things happening within some neighborhood
of its current position. To avoid objects in the environment, the simplest, if imper-
fect, strategy is to set up a limited extent repulsive force field around each such
object. This will create a second desired velocity vector vi2Lrva glso given
by Newton's law. Interaction with other group members can be modeled by si-
multaneously applying different steering behaviors resulting in several additional
desired velocity vectors v5'5°", Moving away from neighbors to avoid crowding,
steering towards flock mates to ensure flock cohesion and adjusting a boid’s speed
to align with average heading of neighbors are most common. Finally, some addi-
tional desired velocity vectors w222 are usually applied to achieve needed global
goals. These can be vectors along some path in space, following some specific

16.7. Groups of Objects ars

designated leader of the Aock, or simply representing migratory urge of a flock
member.

Once all v, are determined, the final desired vector is negotiated based on
priorities among them. Collision avoidance and velocity matching typically have
higher priority. Instead of simple averaging of desired velocity vectors which can
lead to cancellation of urges and unnatural “moving nowhere” behavior, an ac-
celeration allocation strategy is used. Some fixed total amount of acceleration is
made available for a boid and fractions of it are being given to each urge in order
of priority. If the total available acceleration runs out, some lower priority urges
will have less effect on the motion or be completely ignored. The hope is that
once the currently most important task {collision avoidance in most situations) is
accomplished, other tasks can be taken care of in near future, It is also important
to respect some physical limitations of real objects, for example, clamping too
high accelerations or speeds to some realistic values, Depending on the internal
complexity of the flock member, the final stage of animation might be to tun the
negotiated velocity vector into a specific set of parameters (bird's wing positions,
orientation of plane model in space, leg skeleton bone configuration) used to con-
trol a boid’s motion. A diagram of a system implementing flocking is shown on
Figure 16.28 {right).

A much simpler, but still very useful, version of group control is implemented
by particle systems (Reeves, 1983). The number of particles in a system is typi-
cally much larger than number of boids in a flock and can be n the ens or hun-
dreds of thousands, or even more, Moreover, the exact number of particles can
fluctuate during animation with new particles being borm and some of the old
ones destroyed at each step. Particles are typically completely independent from
each other, ignoring one's neighbors and interacting with the environment only
by experiencing external forces and collisions with objects, nor through collision
avoidance as was the case for flocks. At each step during animation, the sys-
tem first creates new particles with some initial parameters, terminates old ones,
and then computes necessary forces and updates velocities and positions of the
remaining particles according to Newton’s law.

All parameters of a particle system (number of particles, particle life span,
initial velocity, and location of a particle, etc.) are usually under the direct control
of the animator. Prime applications of particle systems include modeling fire-
works, explosions, spraying liquids, smoke and fire, or other fuzzy objects and
phenomena with no sharp boundaries. To achieve a realistic appearance, it is im-
portant to introduce some randomness 1o all parameters, for example, having a
random number of particles born (and destroyed) at each step with their velocities
generated according to some distribution. In addition to setting appropriate initial

are 16. Computer Animation

Local wind field
Particle source Vot

Figure 16.29. After being emitted by a directional source, particles collide with an object
and then are biown down by a local wind field once they clear the obstacle.

parameters, controlling the motion of a particle system is commonly done by cre-
ating a specific force pattern in space—blowing a particle in a new direction once
it reaches some specific location or adding a center of attraction, for example.
One should remember that with all their advantages, simplicity of implementa-
tion and ease of control being the prime ones, particle systems typically do not
provide the level of realism characteristic of true physics-based simulation of the
same phenomena,

16.8 MNotes

In this chapter we have concentrated on techniques used in 3D animation. There
also exist a rich set of algorithms to help with 2D animation production and post-
processing of images created by computer graphics rendering systems. These
include technigues for cleaning up scanned-in artist drawings, feature exirac-
tion, automatic 2D in-betweening, colorization, image warping, enhancement and
compositing, and many others.

Une of the most significant developments in the area of computer animation
has been the increasing power and availability of sophisticated animation systems.
While different in their specific set of features, internal structure, details of user
interface, and price, most such systems include extensive support not only for
animation, but alse for modeling and rendering turning them into complete pro-
duction platforms. It is also common to use these systems to create still images.
For example, many images for figures in this section were produced using Maya
software generously donated by Alias.

L. =

16.8. Notes arr

| Large-scale animation production is an extremely complex process which typ-
ically involves a combined effort by dozens of people with different backgrounds
spread across many depariments or even companies. To better coordinate this ac-
tivity, a certain production pipeline is established which starts with a story and
character sketches, proceeds to record necessary sound, build models, and rig
characters for animation. Once actual animation commences, it 15 common 1o
oo back and revise the original designs, models, and rigs to fix any discovered
motion and appearance problems. Setting up lighting and material properties is
then necessary, after which 1t is possible to start rendering, In most sufficiently
complex projects, extensive postprocessing and compositing stages bring together
images from different sources and finalize the product.

We conclude this chapter by reminding the reader that in the field of computer
animation any technical sophistication is secondary to a pood story, expressive
characters, and other artistic factors, most of which are hard or simply impossible
to guantify, It is safe to say that Snow White and her seven dwarfs will always
share the screen with green ogres and donkeys, and most of the audience will be
much more interested in the characters and the story rather than in which, if any,
computers (and in what exact way) helped to create either of them,

Peter Willemsen

17

Using Graphics Hardware

Throughout most of this book, the focus has been on the fundamentals underlying
computer graphics rather than on implementation details. This chapter takes a
slightly different route and blends the details of using graphics hardware with the
practical issues associated with programming that hardware.

This chapter, however, is not written to teach you OpenGL,™ other graphics
APls, or even the nitty gritty specifics of graphics hardware programming. The
purpose of this chapter is to introduce the basic concepts and thought processes
that are necessary when writing programs that use graphics hardware,

17.1 What is Graphics Hardware

Giraphics hardware describes the hardware components necessary to quickly ren-
der 3D objects as pixels on your computer’s screen using specialized rasterization-
based hardware architectures. The use of this term is meant to elicit a sense of
the physical components necessary for performing these computations. In other
words, we're talking about the chipsets, transistors, buses, and processors found
on many current video cards. As we will see in this chapter, current graphics
hardware is very good at processing descriptions of 3D objects and transforming
them into the colored pixels that fill your monitor.

One thing has been certain with graphics hardware: it changes very guickly
with new extensions and features being added continually! One explanation for
the fast pace is the video game industry and its economic momentum, Essentially

379

Real-Time Graphics: By
real-time graphics, we
generally mean that the
graphics-refated compu-
fations are being carried
out fast enough that the
rasulis can be viewed
immediately. Being able
fo conduct operations at
G0Hz I= considered real
time. Once the time to
refresh the display (frame
rafe) drops below 15Hz,
the speed is considerad
more interactive than it is
real-time, but this disting-
tion is not critical, Bacausa
the computaticns nead to
be fast, the equations used
to rendar the graphics are
often approximations o
what could be done if more
time wena available.

380 17. Using Graphics Hardware

primil horkiioil

U il Geometry Pixal

Prn;ﬂﬁ Processing | — ™ Fm:':ﬂng
Figure 17.1. The basic graphics hardware pipaline consists of stages that transtorm 30

data into 20 screen objects ready for rasterizing and coloring by the pixel processing stages.

what this means is that each new graphics card provides better performance and
processing capabilities. As a result, graphics hardware is being used for tasks
that support a much richer use of 3D graphics. For instance, researchers are per-
forming computation on graphics hardware to perform ray-tracing (Purcell, Buck,
Mark, & Hanrahan, 2002) and even solve the Navier-Stokes equations to simulate
fluid flow (Harris. 2004,

Most graphics hardware has been built to perform a set of fixed operations
organized as a pipeline designed to push vertices and pixels through different
stages. The fixed functionality of the pipeline ensures that basic coloring, lighting,
and texturing can occur very quickly—ofien referred to as real-rime graphics.

Figure 17.1 illustrates the real-time graphics pipeline. The important things
to note aboul the pipeline follow:

® The user program, or application, supplies the data to the graphics hardware
in the form of primitives, such as points, lines, or polygons describing the
3D geometry. Images or bitmaps are also supplied for use in texturing
surfaces,

s Geometric primitives are processed on a per-vertex basis and are trans-
formed from 3D coordinates to 2D screen triangles.

o Screen objects are passed to the pixel processors, rasterized, and then col-
ored on a per-pixel basis before being output to the frame buffer, and even-
tually to the monitor.

17.2 Describing Geometry for the Hardware

As a graphics programmer, you need to be concerned with how the data associ-
ated with your 3D objects is transferred onto the memory cache of the graphics
hardware. Unfortunately (or maybe fortunately), as a programmer you don't have
complete control over this process. There are a variety of ways to place your

17.2. Describing Geometry for the Hardware 381

data on the graphics hardware, and each has its own advantages which will be
discussed in this section. Any of the APls you might use to program your video
card will provide different methods to load data onto the graphics hardware mem-
ory. The examples that follow are presented in pseudocode that is based loosely
on the C function syntax of OpenGL,™ but semantically the examples should be
applicable to other graphics APls,

Most graphics hardware work with specific sets of geometric primitives. The
primitive types leverage primitive complexity for processing speed on the graph-
ics hardware. Simpler primitives can be processed very fast. The caveat is that
the primitive types need to be general purpose so as o model a wide range of
geometry from very simple to very complex. On typical graphics hardware, the
primitive types are limited to one or more of the following:

» Points: single vertices used to represent points or particle systems;
o Lines: pairs of vertices vsed to represent lines, silhouvettes, or edge-
highlighting;

» Polygons: (e.g.. triangles, triangle strips, indexed triangles, indexed trian-
gle strips, quadrilaterals, general convex polygons, etc.), used for describ-
ing triangle meshes, geometric surfaces, and other solid objects, such as
spheres, cones, cubes, or cylinders.

These three primitives form the basic building blocks for most geometry you
will define. (An example of a triangle mesh is shown in Figure 17.2,) Using these
primitives, you can build descriptions of your geometry using one of the graphics
AFIs and send the geometry to the graphics hardware for rendering. For instance,

Figure 17.2. How your geomelry is organized will affect the performance of your applica-
tion. This wireframe depiction of the Little Cottonwood Canyon terrain dataset shows tens of

thousands of triangles organized in a triangle mesh running at real-time rates. The image is
rendered using the VTerain Project terrain system courtesy of Ban Discos,

Primitives:The three prim-
itivas (points, lines, and
polygans) are the only prim-
Itives availablel Even when
crealing spline-based sur-
faces, such as NURBs,
the surfaces are lassallated
into triangle prmitives by
the graphics hardware,

Point Rendering: Point
and line primitives may ini-
tially appear to be lim-
ited in use, but researchers
have used points fo ren-
dar very complex geomea-
try (Rusinkiewicz & Levoy,
2000, Dachsbacher, Vo-
gelgsang, & Stamminger,
2003).

W Vo

Figure 17.3. A trian-
gle strip composed of five
vertices defining three trl-
angles.

Je2 17. Using Graphics Hardware

to transfer the description of a line to the graphics hardware, we might use the
following:

beginLine() ;
vertex(| x1, yl, 21);
vertex| x2, y2, B2);
endLine (] ;

In this example, two things occur. First, one of the primitive types is declared and
made active by the beginLine () function call. The line primitive is then made
inactive by the endLine {) function call. Second, all vertices declared between
these two functions are copied directly to the graphics card for processing with
the vertex function calls.

A second example creates a set of triangles grouped together in a strip (refer
to Figure 17.3); we could use the following code:

beginTrianglesStrip();
vertex(x0, y0, 20];
vertex{ x1, v1, 21 };
vertex| %2, ¥2, 22 };
vertex{ x3, v3, 23);
vertex{ x4, y4, 24)

endTriangleStrip();

In this example, the primitive type, TriangleStrip. is made active and the set
of vertices that define the triangle strip are copied to the graphics card memory for
processing. Note that ordering does matter when describing geometry, In the tri-
angle strip example. connectivity between adjacent tnangles is embedded within
the ordering of the vertices. Triangle {0 is constructed from vertices (v0, v1. v2),
triangle t1 from vertices (vl, v3, v2), and triangle ¢2 from vertices (v2, v3, vd).

The key point to learn from these simple examples is that geometry is defined
for rendering on the graphics hardware using a primitive type along with a set of
vertices. The previous examples are simple and push the vertices directly onto
the graphics hardware, However, in practice, you will need to make conscious
decisions about how you will push your data 1o the graphics hardware. These
issues will be discussed shortly.

As peometry is passed to the graphics hardware, additional data can be spec-
ified for each vertex, This extra data is useful for defining srare attributes, that
might represent the color of the vertex, the normal direction at the vertex, texture
coordinates at the veriex, or other per-vertex data. For instance, to set the color
and normal state parameters at each vertex of a triangle strip, we might use the
following code:

alld

17.2. Describing Geometry for the Hardware 383

beginTriangleStrip(};

color{ ¥0, g0, b0 }; normal{ nOx, ndy, nodz);
vertex(=0, w0, 20);
color(rl, gl, bl }); normall nlx, nly, nlz);

vertex(x1, vi, 21);
color{ r2, g2, b2); normal(n2x, n2y, n2z);
vertex | =2, y2, 22)i
color{ r3, g3, b3 }; normal{ n3ix, n3y, niz);
vertex{ X3, ¥3, 23);
color({ r4, g4, b4); normal(n4x, ndy, ndz };
vertex(x4, y4, z4);
endTriangleStrip() ;

Here, the color and normal direction at each vertex are specified just prior to the
vertex being defined. Each vertex in this example has a unique color and normal
direction. The color function sets the active color state using a RGB 3-wple.
The normal direction state at each vertex is set by the normal function. Both the
color and normal function affect the current rendering state on the graphics
hardware. Any vertices defined after these state attributes are set will be bound
with those state attributes.

This i5 a good moment to mention that the graphics hardware maintains a
tairly elaborate set of state parameters that determine how vertices and other com-
ponents are rendered. Some state is bound to vertices, such as color, normal direc-
tion, and texture coordinates, while another state may affect pixel level rendering.
The graphics state at any particular moment describes a large set of internal hard-
ware parameters. This aspect of graphics hardware is important to consider when
you write 3D applications. As you might suspect, making frequent changes to the
graphics state affects performance at least to some extent. However, attempting
to minimize graphics state changes is only one of many areas where thoughtful
programming should be applied. You should attempt to minimize state changes
when you can, but it is unlikely that yvou can group all of your geometry to com-
pletely reduce state context switches. One data structure that can help minimize
state changes, especially on static scenes, is the scene graph data structure. Prior
to rendering any geometry, the scene graph can re-organize the geometry and as-
sociated graphics state in an attempt to minimize state changes. Scene graphs are
described in Chapter 13,

golox{ &, g, B);

normal(nx, ny, nz);

beginTriangleStripi);
vertex| x0, y0, 20);
vertex | X1, w1, =l);
vertex | 2, y2, =22)

384 17. Using Graphics Hardware

vertex| =3, y3, 23)
vertex(=4, vd, =24 };
endTriangleStrip();

All vertices in this TriangleStrip have the same color and normal direction,
s0 these state parameters can be set prior o defining the vertices. This minimizes
both function call overhead and changes to the internal graphics state.

Many things can affect the performance of a graphics program, but one of the
potentially large contributors to performance (or lack thereof) is how your geome-
try is organized and whether it is stored in the memory cache of the graphics card,
In the pseudocode examples provided so far, geometry has been pushed onto the
graphics hardware in what is often called immediate mode rendering, As vertices
are defined, they are sent directly to the graphics hardware. The primary disad-
vantage of immediate mode rendering is that the geometry is sent to the graphics
hardware each iteration of your application. If your geometry is static (ie., it
doesn’t change), then there is no real need to resend the data each time you re-
draw a frame. In these and other circumstances, it 15 more desirable o store the
geometry in the graphics card’s memory,

The graphics hardware in your computer is connected to the rest of the system
via a data bus, such as the PCI, AGP, or PCI-Express buses. When you send data
1o the graphics hardware, it is sent by the CPU on your machine across one of
these buses, eventually being stored in the memory on your graphics hardware. If
you have very large triangle meshes representing complex geometry, passing all
this data across the bus can end up resulting in a large hit to performance. This
is especially true if the geometry is being rendered in immediate mode, as the
previous examples have illustrated.

There are various ways to organize geometry; some can help reduce the over-
all bandwidth needed for transmirting the geometry across the graphics bus. Some
possible organization approaches include:

» Triangles: triangles are specified with three vertices, A triangle mesh cre-
ated in this manner requires that each triangle in the mesh be defined sep-
arately with many vertices potentially duplicated. For a triangle mesh con-
taining m triangles, 3m vertices will be sent to the graphics hardware.

o Triangle strips: triangles are organized in strips; the first three vertices
specify the first triangle in the strip and each additional vertex adds a tri-
angle. If you create a triangle mesh with m triangles organized as a single
triangle strip, you send three vertices to the graphics hardware for the first
triangle followed by a single vertex for each additional triangle in the stnip
for a total of m -+ 2 vertices.

17.2. Describing Geometry for the Hardware aas

o Indexed triangles: triangle vertices are arranged as an array of vertices
with a separate array defining the triangles using indices into the vertex
array. Vertex arrays are sent to the graphics card with very few function
calls.

¢ Indexed triangle strips: similar to indexed triangles, triangle vertices are
stored in a vertex array. However, triangles are organized in strips with
the index array defining the strip layout. This is the most compact of the
organizational structures for defining triangle meshes as it combines the
benefits of triangles strips with the compactness of vertex arrays.

Of the different organizational structures, the use of vertex arrays, either through
indexed triangles or indexed triangle strips, provides a good option for increasing
the performance of your application. The tight encapsulation of the organization
means that many fewer function calls need to be made as well. Once the vertices
and indices are stored in an array, only a few function calls need to be made to
transfer the data to the graphics hardware, whereas with the pseudocode examples
illustrated previously, a function is called for each vertex.

At this point, you may be wondering how the graphics state such as colors,
normals, or texture coordinates are defined when vertex arrays are used. In the
immediate-mode rendering examples earlier in the chapter, interleaving the graph-
ics state with the associated vertices is obvious based on the order of the function
calls. When vertex arrays are used, graphics state can either be interleaved in the
veriex array or specified in separate arrays that are passed to the graphics hard-
ware,

Even if the geometry is organized efficiently when it is sent to the graphics
hardware, you can achieve higher performance gains if you can store your geom-
elry in the graphics hardware’s memory for the duration of your application. A
somewhat unfortunate fact about current graphics hardware is that many of the
specifications describing the layout of the graphics hardware memory and cache
structure are often not widely publicized. Fortunately though, there are ways us-
ing graphics APIs that allow programmers to place geometry into the graphics
hardware memory resulting in applications that run faster.

Two commonly used methods to store geometry and graphics state in the
graphics hardware cache involve creating display sty or vertex buffer objects,

Display lists compile a compact list representation of the geometry and the
state associated with the geometry and store the list in the memory on the graphics
hardware. The benefits of display lists are that they are general purpose and good
al storing a static peometric representation plus associated graphics state on the
hardware. They do not work well at all for continuously changing geometry and

Optimal Organization;
Much research effort has
gone into looking at ways
to optimize triangle meshes
for maximum performance
on graphics hardware. A
good place to start read-
ing if you want to delve fur-
ther Into understanding how
triangle mesh arganization
affects performance is the
SIGGHRAPH 1999 paper on
the optimization of mesh lo-
cality (Hoppe, 1999},

386 17. Using Graphics Hardware

graphics state, since the display list must be recompiled and then stored again
in the graphics hardware memory for every iteration in which the display list
changes.

displayID = createDisplayList();
golor (- ziig. bl
normal { nx, ny, nz);
beginTriangleScrip();

vertex{ =0, 0, z0);

vertex{ x1, ¥1, 21);

vertex|{ x¥, yN, zN);
endTriangleSerip();
endDisplayLiat();

In the above example, a display list is created that contains the definition of a tri-
angle strip with its associated color and normal information. The commands be-
tween the createDisplayList and endDisplayList function calls pro-
vide the elements that define the display list. Display lists are most often created
during an initialization phase of an application. After the display list is created, it
is stored in the memaory of the graphics hardware and can be referenced for later
use by the identifier assigned to the list.

// draw the display list created earlier
drawDisplayList (displayID) ;

When it is time to draw the contents of the display list, a single function call will
instruct the graphics hardware to access the memory indexed through the display
list identifier and display the contents.

A second method to store geometry on the graphics hardware for the duration
of your application is through vertex buffer objects (VBOs). VBOs are specialized
buffers that reside in high-performance memory on the graphics hardware and
store vertex arrays and associated graphics state. They can also provide a mapping
from your application to the memory on the graphics hardware to allow for fast
access and updating to the contents of the VBO.

The chief advantage of VBOs is that they provide a mapping into the graphics
hardware memory, With VBOs, geometry can be modified during an application
with a minimal loss of performance as compared with using immediate mode
rendering or display lists. This is extremely useful if portions of your geometry
change during each iteration of your application or if the indices used to organize
your geometry change.

VBOs are created in much the same way indexed triangles and indexed trian-
gle strips are built. A buffer object is first created on the graphics card to make

17.3. Processing Geometry into Pixels 387

room for the vertex array containing the vertices of the triangle mesh. Next, the
vertex array and index array are copied over to the graphics hardware. When it
is time to render the geometry, the vertex buffer object identifier can be used o
instruct the graphics hardware to draw your geometry, If you are already using
vertex arrays in your application, modifying your code to use VBOs should likely
require a minimal change.

17.3 Processing Geometry into Pixels

After the geometry has been placed in the graphics hardware memory, each ver-
tex must be 11t as well as transformed into screen coordinates during the geometry
processing stage, In the fixed-function graphics pipeline illustrated in Figure 17.1,
vertices are transformed from a medel coordinate system 1o a screen coordinate
frame of reference. This process and the mairices involved are described in Chap-
ters 7 and 12. The modelview and projection matrices needed for this transfor-
mation are defined using functions provided with the graphics APl you decide 1o
use.

Lighting is calculated on a per-vertex basis. Depending on the global shading
parameters, the triangle face will either have a Aat-shaded look or the face color
will be diffusely shaded (Gouraud shading) by linearly interpolating the color at
each triangle vertex across the face of the mangle. The latter method produces
a much smoother appearance. The color at each vertex is computed based on
the assigned material properties, the lights in the scene, and various lighting
parameiers. i

The lighting model in the fixed-function graphics pipeline is good for fas
lighting of vertices; we make a tradeoff for increased speed over accurate illu-
mination. As a result, Phong shaded surfaces are not supported with this fixed-
function framework.

In particular, the diffuse shading algorithm built into the graphics hardware
often fails to compute the appropriate illumination since the lighting is only being
calculated at each vertex. For example, when the distance to the light source is
small, as compared with the size of the face being shaded, the illumination on
the face will be incorrect. Figure 17.4 illustrates this sitvation. The center of
the triangle will not be illuminated brightly despite being very close to the light
source, since the lighting on the vertices, which are far from the light source, are
used to interpolate the shading across the face.

With the fixed-function pipeline, this issue can only be remedied by increasing
the tessellation of the geometry. This solution works but is of limited use in real-

Figure 17.4. The distance
fo the light source is small
relative to the size of the iri-
angle.

Definition: Fragment is a
term that describes the in-
formation associated with
a pixal prior to being pro-
cessed by the graphics
hardware. This definiticn
includes much of the data
that might be used to cal-
culate the color of the pixel,
such as the pixels scene
depth, texture coordinates,
or stencil information.

388 17. Using Graphics Hardware

time graphics as the added geometry required for more accurate illumination can
result in slower rendering.

However, with current hardware, the problem of obtaining better approxima-
tions for illumination can be solved without necessarily increasing the geometric
complexity of the objects. The solution involves replacing the fixed-function rou-
tines embedded within the graphics hardware with your own programs. These
smiall programs run on the graphics hardware and perform a part of the geometry
processing and pixel-processing stages of the graphics pipeline.

17.3.1 Programming the Pipeline

Fairly recent changes to the organization of consumer graphics hardware has gen-
erated a substantial buzz from game developers, graphics researchers, and many
others. It is quite likely that you have heard about GPU programming, graph-
ics hardware programming, or even shader programming, These terms and the
changes in consumer hardware that have spawned them primarily have to do with
how the graphics hardware rendering pipeline can now be programmed,
Specifically, the changes have opened up two specific aspects of the graphics
hardware pipeline. Programmers now have the ability to modify how the hard-
ware processes vertices and shades pixels by writing vertex shaders and frag-
ment shaders (also sometimes referred to as vertex pragramys or fragment pro-
grams). Vertex shaders are programs that perform the vertex and normal trans-
formations, texture coordinate generation, and per-vertex lighting computations
normally computed in the geometry processing stage. Fragment shaders are pro-
grams that perform the computations in the pixel processing stage of the graphics
pipeline and determine exactly how each pixel is shaded, how textures are ap-
plied, and if a pixel should be drawn or not. These small shader programs are
sent to the graphics hardware from the user program (see Figure 17.5), but they
are executed on the graphics hardware. 'What this programmability means for

e 20 screan
I primitives Gaoma coordinabes Pixel
Program - — Processing o — Processing

|L vtz pragii 4

pinal shadaer

Figure 17.5. The programmable graphics hardware pipeling. The user program supplies
primitives, vertex programs, and fragment programs to the hardwara.

-

17.3. Processing Geometry into Pixels 389

you is that you essentially have a multi-processor machine. This turns out to be
a good way 1o think about your graphics hardware, since it means that you may
be able to use the graphics hardware processor to relieve the load on the CPU in
some of your applications. The graphics hardware processors are often referred
to as GPLs, GPU stands for Graphics Processing Unit and highlights the fact
that graphics hardware components now contain a separate processor dedicated
to graphics-related computations,

Interestingly, modern GPUSs contain more transistors than modern CPUs. For
the time being, GPUs are utilizing most of these transistors for computations and
less for memory or cache management operations.

However, this will not always be the case as graphics hardware continues to
advance. And just because the computations are geared towards 3D graphics,
it does not mean that you cannot perform computations unrelated to computer
graphics on the GPU. The manner in which the GPU is programmed is differ-
ent from your general purpose CPU and will require a slightly modified way of
thinking about how to solve problems and program the graphics hardware.

The GPU is a stream processor that excels at 3D vector operations such as
vector multiplication, vector addition, dot products, and other operations neces-
sary for basic lighting of surfaces and texture mapping. As siream processors,
both the veriex and fragment processing componenis include the ability to pro-
cess multiple primitives at the same time. In this regard, the GPU acts as a SIMD
{Single Instruction, Multiple Data) processor, and in certain hardware implemen-
tations of the fragment processor, up to 16 pixels can be processed at a fime.
When vou write programs for these processing components, it will be helpful, at
least conceptually, to think of the computations being performed concurrently on
your data. In other words, the vertex shader program will run for all vertices at
the same time. The vertex computations will then be followed by a stage in which
your fragment shader program will execute simultaneously on all fragments. It
is important to note that while the computations on vertices or fragments occur
concurrently. the staging of the pipeline components still occur in the same order.

The manner in which vertex and fragment shaders work is simple. You write
a vertex shader program and a fragment shader program and send it to the graph-
ics hardware. These programs can be used on specific geometry, and when your
geometry is processed, the vertex shader is used to transform and light the ver-
tices, while the fragment shader performs the final shading of the geometry on a
per-pixel basis. Just as you can texture map different images onto different pieces
of geometry, you can also write different shader programs to act upon different
objects in your application. Shader programs are a part of the graphics state so
you do need to be concerned with how your shader programs might get swapped
in and out based on the geometry being rendered.

Historical: Programming
the pipeline is not entirely
MEw, Cne of the first
intreductions of a graphics
hardwara architectura
designed for program-
ming flexibility wera the
PixaiFlow architectures
and shading languages
from UNC (Molnar, Eyles.
& Poulton, 1992; Lastra,
Mainar, Ofano, & Wang,
1885, Olanc & Lasfira.
1998). Additional efforts
o provide custom shading
technigues have included
shade frees (Cook,
1884), BenderMan (Pixar,
2000}, accelerated mulfi-
pass rendering wusing
OpenGL™ (Peercy, Olano,
Airgy, & Ungar, 2000), and
other realtime shading
languages (Proudioot,
Mark, Tazvetkow, & Han-
rahan, 2001; McCool, Du
Toit, Popa, Chan, & Moulg,
2004).

390 17. Using Graphics Hardware

The details tend to be a bit more complicated, however. Vertex shaders usually
perform two basic actions; set the color at the vertex and transform the veriex into
screen coordinates by multiplying the vertex by the modelview and projection
matrices. The perspective divide and clipping steps are not performed in a vertex
program, Vertex shaders are also often used to set the stage for a fragment shader.
In particular, you may have vertex attributes, such as texture coordinates or other
application- dependent data, that the veriex shader caleulates or modifies and then
sends to the fragment processing stage for use in your fragment shader. 1t may
seem strange at first, bul vertex shaders can be used to manipulate the positions
of the vertices. This 15 often useful for generating simulated ocean wave motion
entirely on the GPU.

In a fragment shader, it is required that the program outputs the fragment
color. This may involve looking up texture values and combining them in some
manner with values obtained by performing a lighting calculation at each pixel;
or, it may involve killing the fragment from being drawn entirely. Because op-
erations in the fragment shader operate at the fragment level, the real power of
the programmable graphics hardware is in the fragment shader, This added pro-
cessing power represents one of the key differences between the fixed function
pipeline and the programmable pipeline. In the fixed pipeline, fragment process-
ing used illumination values interpolated between the vertices of the triangle o
compute the fragment color. With the programmable pipeline, the color at each
fragment can be computed independently. For instance, in the example situation
posed in Figure 17.4, Gouraud shading of a triangle face fails to produce a reason-
able solution because lighting only occurs at the vertices which are farther away
from the light than the center of the triangle. In a fragment shader, the lighting
equation can be evaluated at each fragment, rather than at each vertex, resulting
in a more accurate rendering of the face.

17.3.2 Basic Execution Model

When writing vertex or fragment shaders, there are a few important things to un-
derstand in terms of how vertex and fragment programs execute and access data
on the GPU. Because these programs run entirely on the GPU, the first details
vou will need to figure out are which data your shaders will use and how to get
that data to them. There are several characteristics associated with the data types
used in shader programs. The following terms, which come primarily from the
OpenGL™ Shading Language framework, are used to describe the concepiual
aspects of these data characteristics. The concepts are the same across different
shading language frameworks. In the shaders you write, variables are character-
ized using one of the following terms:

17.3. Processing Geometry into Pixels 3

e atiributes: Attribute variables represent data that changes frequently, often
on a per-vertex basis. Attribute variables are often tied to the changing
graphics state associated with each vertex. For instance, normal vectors or
texture coordinates are considered to be attribute data since they are part of
the graphics state associated with each vertex.

» uniforms: Uniform variables represent data that cannot change during the
execution of a shader program. However, uniform variables can be mod-
ified by your application between executions of a shader. This provides
another way for your application to communicate data to a shader. Uniform
data often represent the graphics state associated with an application, For
instance, the modelview and projection matrices can be accessed through
uniform variables. Information about light sources in your application can
also be obtained through uniform variables. In these examples, the data
does not change while the shader is executing, but could (e.g., the light
could move) prior to the next iteration of the application,

o varying: Varying data is used to pass data between a vertex shader and
a fragment shader. The reason the data is considered varying is because
it is written by vertex shaders on a per-vertex basis, but read by fragment
shaders as value interpolated across the face of the primitive between neigh-
boring vertices.

Variables defined using one of these three characteristics can either be built-in
variables or user-defined variables, In addition to accessing the built-in graphics
state, attribute and uniform variables are one of the ways to communicate user-
defined data to your vertex and fragment programs. Varying data is the only means
to pass data from a vertex shader to a fragment shader. Figure 17.6 illustrates the
basic execution of the vertex and fragment processors in terms of the inputs and
outputs used by the shaders.

Another way to pass data to vertex and fragment shaders is by using texture
maps as sources and sinks of data. This may come as a surprise if you have been
thinking of texture maps solely as images that are applied to the outside surface of
geometry. The reason texture maps are important is because they give you access
to the memory on the graphics hardware. When you write applications that run
on the CPU, you control the memory yvour application requires and have direct
access to it when necessary. On graphics hardware, memory is not accessed in
the same manner. In fact, you are not directly able to allocate and deallocate gen-
eral purpose memory chunks, and this particular aspect usually reguires a slight
change in thinking.

Mote: The shader lan-
guage examples used In
this chapler are presented
using GLSL (OpenGL™
Shading Language). This
language was chosen singe
it Iz being developed by
the OpenGL™ Architec-
fure Review Board and
will likely become a stan-
dard shading language for
OpanGLm with the release
of OpenGL™ 20, As
of this writing, GLSL can
be used on most mod-
ern graphics cards with up-
dated graphics hardware
drivers.

agz 17. Using Graphics Hardware

mm*m fragmeni shader

| prveten atnoees [r—— iy o el an e
.
R vt G
| wfor graphics yute tox oo 2 FEAITI (FRONCN B B -
ko duk e o Sriure cain L
_—]
b mraisrmeag-
gt ieiey (O e Lk
irnpdfin

Figure 17.6. The execution model for shader programs. Input, such as per-vertex attributes,
graphics state-related uniform variables, varying data, and texture maps are provided to
verten and fragment programs within the shader processor, Shaders output special variables
used in later parts of the graphics pipeline.

Texture maps on graphics hardware, however, can be created. deleted, and
controlled through the graphics APl you use. In other words, for general data
used by your shader, you will create texture maps that contain that data and then
use texture access functions to look up the data in the texture map. Technically,
textures can be accessed by both vertex and fragment shaders. However, in prac-
tice, texture lookups from the vertex shader are not currently supported on all
graphics cards. An example that utilizes a texture map as a data source is bump
mapping. Bump mapping uses a normal map which defines how the normal vec-
tors change across a triangle face, A bump mapping fragment shader would look
up the normal vector in the normal map “texture data” and use it in the shading
calculations at that particular fragment.

You need to be concerned about the types of data you put into your tex-
ture maps, Not all numerical data types are well supporied and only recently
has graphics hardware included floating point textures with 16-bit components,
Moreover, none of the computation being performed on your GPU is done with
double-precision math! If numerical precision is important for your application,
yvou will need to think through these issues very carefully to determine if using
the graphics hardware for computation is useful.

So what do these shader programs look like? One way to write vertex and
fragment shaders is through assembly language instructions. For instance, per-
forming a matrix multiplication in shader assembly language looks something
like this:

DP4 plo] .x, M[0], w[O];
DP4 plol.y, M[1], w[Ol:
ppd plo] .=z, M[2], vIO];
DP4 plo}.w, M[3], v[0];

£

17.3. Processing Geometry into Pixels 393

In this example, the DP4 instruction is a 4-component dot product function. It
stores the result of the dot product in the first register and performs the dot
product between the last two registers. In shader programming, registers hold
4-components corresponding to the x, v, z, and w components of a homogeneous
coordinate, or the r, g, &, and @ componenis of a RGBA wple. So, in this example,
a simple matrix multiplication,

p = Mv

is computed by four DP4 instructions, Each instruction computes one element of
the final result.

Forunately though, you are not forced to program in assembly language. The
good news is that higher-level languages are available to write vertex and frag-
ment shaders. NVIDIA's Cg, the OpenGL™ Shading Language (GLSL), and
Microsoft’s High Level Shading Language (HLSL) all provide similar interfaces
to the programmable aspects of graphics hardware. Using the notation of GLSL,
the same matrix multiplication performed above looks like this:

p:va;

where p and v are vertex data types and M is a matrix data type. As evidenced
here, one advantage of using a higher-level language over assembly language is
that various data types are available to the programmer. In all of these languages,
there are built-in data types for storing vectors and matrices, as well as arrays and
constructs for creating structures. Many different functions are also built in to
these languages to help compute trigonometric values (sin. cos, ete..), minimum
and maximum values, exponential functions (log2, sgrt, pow, elc...), and other
math or geometric-based functions.

17.3.3 Verlex Shader Example

WVertex shaders give you control over how vour vertices are lit and transformed.
They are also used to set the stage for fragment shaders, An interesting aspect o
vertex shaders is that you still are able 1o use geometry-caching mechanisms, such
as display lists or VBOs, and thus, benefit from their performance gains while us-
ing vertex shaders to do computation on the GPU. For instance, if the vertices
represent particles and you can model the movement of the particles using a ver-
tex shader, vou have nearly eliminated the CPU from these computations. Any
bottleneck in performance that may have occurred due to data being passed be-
tween the CPLU and the GPU will be minimized. Prior to the introduction of vertex
shaders, the computation of the particle movement would have been performed

394 17. Using Graphics Hardware

on the CPU and each vertex would have been re-sent to the graphics hardware
on each iteration of your application. The ability to perform computations on the
vertices already stored in the graphics hardware memory is a big performance
win.

One of the simplest vertex shaders transtorms a vertex into clip coordinates
and assigns the front-facing color to the color attribute associated with the vertex.

void main{void)

{

gl Pogition = gl ModelViewProjeccionMatrix «
gl Vertex;
gl_FromtColor = gl_Colorx;

}

In this example, gl ModelViewProjectionMatrix is a built-in uniform
variable supplied by the GLSL run-time environment. The variables gl Vertex
and gl Color are built-in vertex attributes; the special output variables,
gl.Position and gl _FrontColor are used by the vertex shader to set the
transformed position and the vertex color,

A more interesting vertex shader that implements the surface- shading equa-
tions developed in Chapter 9 illustrates the effect of per-vertex shading using the
Phong shading algorithm.

void main [void)

{
vecd v = gl_ModelViewMatrix * gl Vertex;
vegd n = normalize (gl NormalMatrix = gl _Normal) ;
vecld 1 = normalize{gl LightScurce[0] .pesition - w);
vecld h = normalize(l - normalize{wv));
float p = 16;

vecd cr = gl_FrontMaterial.diffuse;
vecd cl = gl LightSource [0] .diffuse;
vecd ca = vec4 (0.2, 0.2, 0.2, 1.0);

vecd color;
if {detih;n) » 0)
calor = cr = (ca + ol » max{0,dot{n,1))) +
cl » powldor(h,n}, plr
elae
color = cr » {ca + el + max(0,dot(n,1l})};

gl FrontColor = color;
gl Pogition = ftranaform();

17.3. Processing Geometry into Pixels 395

From the code presented in this shader, you should be able to gain a sense of
shader programming and how it resembles C-style programming. Several things
are happening with this shader. First, we create a set of variables to hold the
vectors necessary for computing Phong shading: v.n. 1, and h. Note that the
computation in the vertex shader is performed in eve-space. This is done for a va-
riety of reasons, but one reason is that the light-source positions accessible within
a shader have already been transformed into the eve coordinate frame, When you
creale shaders, the coordinate system that you decide 1o use will likely depend
on the types of computations being performed: this is an important factor to con-
sider. Also, note the use of built-in functions and data structures in the example.
In particular, there are several functions used in this shader: normalize, dot,
max, pow, and fcransform. These functions are provided with the shader
language. Additionally, the graphics state associated with materials and light-
ing can be accessed through built-in uniform variables: gl _FrontMaterial
and gl _LightSource [0]. The diffuse component of the material and light
is accessed through the diffuse member of these variables. The color at the
vertex is computed using Equation 9.8 and then stored in the special output vari-
able gl _FrontColor. The vertex position is transformed using the function

Figure 17.7. Each sphere is rendered using only a vertex shader that computes Phong
shading. Because the computation is being performed on a per-vartex basis, the Phong
highlight only begins 1o appear accurate after the amount of geometry used to model the
sphere is increased drastically. (See also Plate V)

396 17. Using Graphics Hardwara

frransform which is a convenience function that performs the multiplication
with the modelview and projection matrices. Figure 17.7 shows the results from
running this vertex shader with differently tessellated spheres. Because the com-
putations are performed on a per-vertex basis, a large amount of geomeiry is re-
quired to produce a Phong highlight on the sphere that appears correct.

17.3.4 Fragment Shader Example

Fragment shaders are written in & manner very similar to vertex shaders, and to
emphasize this, Equation 9.8 from Chapter 9 will be implemented with a fragment
shader. In order to do this, we first will need to write a vertex shader to set the
stage for the fragment shader.

The vertex shader required for this example is fairly simple, but introduces the
use of varying variables to communicate data 1o the fragment shader.

varying wvecd w;
varying veci n;

void main(void)

{
v = gl_MeodelViewMatrix + gl Vertex;
n = normalize (gl NormalMatrix « gl Normal);

gl Positien = ftransform();

}

Recall that varying variables will be set on a per-vertex basis by a vertex shader,
but when they are accessed in a fragment shader, the values will vary (i.e., be
interpolated) across the triangle, or geometric primitive. In this case, the vertex
position in eve-space v and the normal at the vertex n are calculated at each
vertex, The final computation performed by the vertex shader is to transform the
vertex into clip coordinates since the fragment shader will compute the lighting
at each fragment. It is not necessary to set the front-facing color in this vertex
shader.

The fragment shader program computes the lighting at each fragment using
the Phong shading model.

yarying vecd v;
varying wveci n;

void main{void)

(

17.3. Processing Geomelry into Pixels 397

vecd 1 = normalize (gl LightSourece [0] .position - vi;
vecd h = normalize(l - normalize(v));

float p 16;

vecd cr = gl_FrontMaterial.diffuse;
vecd cl = gl LightScurce[0] .diffuse;
Yecd ca = vecd (0.2, 0.2, 0.2, 1.0)¢

vecd color;
if (dotih,n} > 0)
color = cr = (ca + cl = maxi{0,dot(n,1))) +
cl » pow{dot{h,n}),p);
elee
color = ¢r + {ca + ¢l + max({0,dotin,1)));

gl FragColor = color;

The first thing you should notice is the similarity between the fragment shader
code in this example and the vertex shader code presented in Section 17.3.3. The

¥ 4 ik -
T HA A e %
\ L% e
s et
gy |] . I
| b A e
i e P
{ T W i
By J
8 it L
: e
=i T

Figure 17.8. The results of running the fragment shader from Section 17.3.4, Mote that
the Phang highlight does appear on the laft-most modal which is represented by & singie
polygon. In fact, because lighting is calculated at the fragment, rather than al each vertex,
the more coarsely tessellated sphere models alze demonstrate appropriate Phong shading.
(See also Plate 1X.)

394 17. Using Graphics Hardware

main difference is in the use of the varying variables, v and n. In the fragment
shader, the view vectors and normal values are interpolated across the surface of
the model between neighboring vertices, The results are shown in Figure 17.8.
Immediately, you should notice the Phong highlight on the quadrilateral, which
only contains four vertices. Because the shading is being calculated at the frag-
ment level using the Phong equation with the interpolated (i.e., varying) data,
more consistent and accurate Phong shading is produced with far less geometry,

17.3.5 General Purpose Computing on the GPU

After studying the vertex and fragment shader examples, you may be wondering
if you can write programs 1o perform other types of computations on the GPU.
Obviously, the answer is yes. as many problems can be coded to run on the GPU
ziven the various languages available for programming on the GPU, However, a
few facts are important to remember. Foremost, floating point math processing
on graphics hardware is not currently double-precision. Secondly, you will likely
need to transform your problem into a form that fits within a graphics-related
framework. In other words, you will need to use the graphics APIs to set up the
problem, use texture maps as data rather than traditional memory, and write vertex
and fragment shaders to frame and solve your problem.

Having stated that, the GPU may still be an attractive platform for computa-
tion, since the ratio of transistors that are dedicated to performing computation
is much higher on the GPU than it is on the CPU. In many cases, algorithms
running on GPUs run faster than on a CPU. Furthermore, GPUs perform SIMD
computation, which is especially true at the fragment-processing level. In fact,
it can often help to think about the computation occurring on the fragment pro-
cessor as a highly parallel version of a generic foreach construct, performing
simultaneous operations on a set of elements.

There has been a large amount of investigation to perform General Purpose
computation on GPUs, often referred 10 as GPGPU. Among other things, re-
searchers are using the GPU as a means to simulate the dynamics of clouds (Har-
ris, Baxter, Schewermann, & Lastra, 2003), implement ray tracers (Purcell et al..
2002; Carr, Hall, & Hart, 2002), compute radiosity (Coombe, Harris, & Lastra,
2004), perform 3D segmentation using level sets (A. E. Lefohn, Kniss, Hansen,
& Whitaker, 2003), or solve the Navier-Stokes equations { Harris, 2004).

General purpose computation is often performed on the GPU using multiple
rendering “passes.” and most computation is done using the fragment processor
due to its highly data-parallel setup. Each pass, called a kernel, completes a por-
tion of the computation. Kernels work on streams of data with several kernels

17.3. Processing Geomelry into Pixels 399

strung together to form the overall computation. The first kernel completes the
first part of the computation, the second kemmel works on the first kernel's data,
and so on, until the calculation is complete. In this style of programming, working
with data and data structures on the GPU is different than conventional program-
ming and does require a bit of thought, Fortunately, recent efforts are providing
abstractions and information for creating efficient data structures for GPU pro-
gramming (A. Lefohn, Kniss, & Owens, 2003},

Using the GPU for general purpose programming does require that you un-
derstand how to program the graphics hardware. For instance, most applications
that perform GPGPU will render a simple quadrilateral, or sets of quadrilater-
als, with vertex and fragment shaders operating on that geometry. The geometry
doesn’t have to be visible, or drawn to the screen, but it is necessary to allow
the vertex and fragment operations to occur. This focus on graphics does make
the learning curve for general purpose computing on this hardware an adventure.
Fortunately, recent efforts are working to make the interface to the GPU more
like traditional programming. The Brook for GPUs project (Buck et al., 2004}
is a system that provides a C-like interface to afford stream computations on the
GPU. which should allow more people to take advantage of the computational
power on modern graphics hardware.

Frequently Asked Questions

» How do | debug shader programs?

On most platforms, debugging both vertex shaders and fragment shaders is not
simple. There is very little runtime support for debugging graphics applications
in general, and even less available for runtime debugging of shader programs.
However, this is starting to change. In the latest versions of Mac OS X, Linux,
and Windows, support for shader programming is incorporated. A good solution
for debugging shader programs is to use one of the shader development tools
available from various graphics hardware manufacturers.

Notes

There are many good resources available to learn more about the technical de-
tails invalved with programming graphics hardware. A good starting point might
be the OpenGL™ Programming Guide (Shreiner et al,, 2004), The OpenGL™
Shading Language (Rost, 2004) and The Cg Tutorial (Fernando & Killgard, 2003)

400 17. Using Graphics Hardware

provide details on how to program using a shading language. More advanced
technical information and examples for programming the vertex and fragment
processors can be found in the GPU Gems series of books
i Fernando, 2004; Pharr & Fernando, 2005). A source of information for learning
more about general purpose computation on GPUs (GPGPU) can be found on the
GPGPU.org web site (http:/fwww.gpzpu.org).

Exercises

1. How fast is the GPU as compared to performing the operations on the CPU?
Write a program in which you can parameterize how much data is processed
on the GPU, ranging {rom no computation using a shader program to all
of the computation being performed vsing a shader program. How does
the performance of you application change when the computation is being
performed solely on the GPU?

2. Are there sizes of tiangle strip lengths that work betier than others? Try
o determine the maximum size of a triangle strip that maximizes perfor-
mance. What does this el you about the memeory, or cache structure, on
the graphics hardware?

Kelvin Sung

18

Building Interactive Graphics
Applications

While most of the other chapters in this book discuss the fundamental algorithms
in the field of computer graphics, this chapter treats the integration of these al-
gorithms into applications. This is an important topic since the knowledge of
fundamental graphics algorithms does not always easily lead to an understanding
of the best practices in implementing these algorithms in real applications.

We start with a simple example: a program that allows the user 1o simulate the
shooting of a ball {under the influence of gravity). The user can specify ininal ve-
locity, create balls of different sizes, shoot the ball, and examine the parabolic free
fall of the ball. Some fundamental concepts we will need include mesh structure
for the representation of the ball (sphere); texture mapping, lighting, and shading
for the aesthetic appearance of the ball; transformations for the trajectories of the
ball; and rasterization technigues for the generation of the images of the balls,

Ta implement the simple ball shooting program, one also needs knowledge of

s Graphical user interface (GUI) systems for efficient and effective user in-
teraction;

e Software architecture and design patterns for crafting an implementation
framework that is easy to maintain and expand;

o Application program interfaces { APls) for choosing the appropriate support
and avoiding a massive amount of unnecessary coding.

4M

402 18. Building Interactive Graphics Applications

To gain an appreciation for these three important aspects of building the ap-
plication, we will complete the following steps;

s analyze interactive applications;

o understand different programming models and recognize important fune-
tional components in these models;

define the interaction of the components;

o design solution frameworks for integrating the components; and

demonstrate example implementations based on different sets of existing
APIs,

We will use the ball shooting program as our example and begin by refining the
detailed specifications. For clarity, we avoid graphics-specific complexities in
3D space and confine our example to 2D space. Obviously, our simple program
is neither sophisticated nor representative of real applications. However, with
slightly refined specifications, this example contains all the essential components
and behavioral characteristics of more complex real-world interactive systems.
We will continue to build complexity into our simple example, adding new
concepts until we arrive at a software architecture framework that is suitable for
building general interactive graphics applications. We will examine the validity of
our results and discuss how the lessons learned from this simple example can be
applied to other familiar real-world applications (e.g., PowerPoint, Maya, etc.).

18.1 The Ball Shooting Program

Our simple program has the following elements and behaviors:

¢ The balls (objects): The user can left-mouse-button-click and drag-out a
new ball icircle) anywhere on the screen (see Figure 18.1). Dragging-out a
ball includes:

— (A} imtial mouse-button-click position defines the center of the cir-
cle:

- (B} mouse button down and moving the mouse is the dragging action;

— (C}): current mouse position while dragging allows us to define the
radius and the initial velocity. The radius R (in pixel units) is the dis-
tance to the center defined in (A). The vector from the current position
to the center is the initial velocity V (in units of pixel per second),

18.1. The Ball Shooting Program 403

(V) Initial velocity

{A): Initial mouse
click position

(B) Dragging

(C) Current
mouse position

Figure 18.1. Dragging out a ball.

Once created, the ball will begin traveling with the defined initial velocity.

HeroBall (Hero/active object): The user can also right-mouse-button-
click to select a ball to be the current HeroBall. The HeroBall's velocity
can be controlled by the slider bars (discussed below) where its velocity
is displayed. (A newly created ball is by default the current HeroBall.)
A right-mouse-button-click on unoccupied space indicates that no current
HeroBall exists.

o Velocity slider bars (GUI elements): The user can monitor and control
two slider bars (x- and y-directions with magnitudes) to change the veloc-
ity of the HeroBall. When there is no HeroBall, the slider bar values are
undefined,

& The simulation:

— Ball traveling/collisions (object intrinsic behaviors): A ball knows
how to travel based on its current velocity and one ball can potentially
collide with another. For simplicity, we will assume all balls have
identical mass and all collisions are perfectly elastic,

— Gravity (external effects on objects): The velocity of a ball is con-
stantly changing due to the defined gravitational force.

— Status bar (application state echo): The user can monitor the ap-
plication state by examining the information in the status bar. In our
application, the number of balls currently on the screen is updated in
the status bar,

404 18. Building Interactive Graphics Applications

out balls O

Figure 18.2. The Ball Shooting pragram,

Our application starts with an empty screen. The vser clicks and drags to
create new balls with different radii and velocities. Once a ball travels off of the
screen, it is removed. To avoid unnecessary details, we do not include the drawing
of the motion trajectories or the velocity vector in our solutions. Notice that a
slider bar communicates its current state to the user in two ways: the position of
the slider knob and the numeric echo (see Figure 18.2).

We have now described the behavior of a simple interactive graphics appli-
cation. In the rest of this chapter, we will learn the concepts that support the
implementation of this type of application.

18.2 Programming Models

For many of ws, when we were first introduced to computer programming, we
learned that the program should always start and end with the main{) function—
when the main() function returns, all the work must have been completed and the
program terminates. Since the overall control remains internal to the main() func-
tion during the entire life time of the program, the type of model for this approach
to solving problems is called an internal control model, or control-driven pro-
gramming. As we will see, an alternative paradigm, event-driven programming
or an external control model approach, is the more appropriate way to design
solutions to interactive programs.

18.2. Programming Models 405

In this section, we will first formulate a solution 1o the 2D ball shooting pro-
gram based on the, perhaps more familiar, control-driven programming model.
We will then analyze the solution, identify shortcomings, and describe the moti-
vation for the external control model or event-driven programming approach.

The pseudocode which follows is C++/Java-like, We assume typical function-
ality from the operating System (OperatingSyvstem:) and from a Graphical User
Interface API (GUISvsrem::). The purpose of the psendocode is to assist us in
analyzing the foundation control structure (i.e., iffwhile/case) of the solution, For
this reason, the details of application- and graphics-specific operations are inten-
tionally glossed over. For example, the details of how o UpdareSimulation|) is

purposely omitted.

18.2.1 Control-Driven Programming

The main advantage of control-driven programming is that it is fairly straightfor-
ward to translate a verbal description of a solution to a program control structure.
In this case, we verbalize our solution as follows:

while the user does not want to guit (A);

parse and execute the user's command (B);

update the velocities and positions of the balls (C);

then draw all the balls (D});

and finally before we poll the user for another command,

tell the user what is going on by echoing current application state to
the status bar (E)

{A): As fong os user is whille user command s not quil

nol ready to quit

(B P e parse and excute user's command

quamimnd if (OperatingSystenes:SufficiantClock TimeHasElapesd) |
{C): periodically LipdateSimulation) ¥ ipabizte thie paasiitony and selicinies

upiate positions and O el e Bafly fin ANWorldBalls sei)
velocities of the balls

UrawHallsi A0 WorldBalls) 0 all the balls e ANW orld Balls s
{13} Dravw all balls to : ¢

the computer seneen
{Ex Sets status bar EchoTobmtesBar Y St arona ey b of bally on soreen
with number of balls

Figure 18.3. Programming structure from a verbalized solution.

il

408 18. Building Interactive Graphics Applications

Figure 18.3 shows a translation from this verbal solution into a simple pro-
gramming structure. We introduce the set of AllWorldBalls to represent all the
balls that are currently on the computer screen. The only other difference between
the pseudocode in Figure 18.3 and our verbalized solution is in the added elapsed
time check in Step (C): SufficientClockTimeHasElapsed. (Recall that the veloci-
ties are defined in pixels per second.) To support proper pixel displacements, we
must know real elapsed time between updates.

As we add additional details to parse and execute the user's commands (B}, the
solution must be expanded. The revised solution in Figure 18.4 shows the details
of a central parsing switch statement (B) and the support for all three commands
a user can issue: defining a new HeroBall (B1); selecting a HeroBall (B2); and
adjusting current HeroBall velocity with the slider bars (B3). Undefined user
actions {e.g., mouse movement with no button pressed) are simply ignored (B4).

Notice that HeroBall creation (B 1) involves three user actions: mouse down
(B 1), followed by mouse drag (B1-1), and finally mouse up (B1-2). The parsing
of this operation 15 performed in multiple consecutive passes through the outer
while-loop (A): the first time through, we create the new HeroBall (B1); in the
subsequent passes, we perform the actual dragging operation (B1-1). We assume
that mouse drag (B1-1) will never be invoked without mouse button down (B1)
action, and thus the HeroBall 1s always defined during the dragging operation.

The LeftMouseButtonlUp action (B1-2) is an implicit action not defined in the
original specification. In our implementation, we choose this implicit action to
activate the insertion of the new HeroBall into the AllWorldBalls sel. In this
way the HeroBall is not a member of the AllWorldBalls set until after the user has
completed the dragging operation, This delay ensures that the HeroBall's velocity
and position will not be affected when the UpdateSimulation() procedure updates
all the balls in AllWorldBalls set (C), This means a user can take the time 1o
drag out a new HeroBall without worrying that the ball will free fall before the
release of the mouse button. The simple amendment in the drawing operation
{D1) ensures a proper drawing of the new HeroBall before it is inserted into the
AllWorldBalls set.

When we examine this solution in the context of supporting user interaction,
we have to concern ourselves with efficiency issues as well as the potential for
increased complexity.

Efficiency Concerns. Typically a user interacts with an application in bursts of
actvity—continuous actions followed by periods of idling. This can be explained
by the fact that, as users, we typically perform some tasks in the application and
then spend time examining the results. For example, when working with a word

18.2. Programming Models 407
]— maing} |
(A ” i
whibe | GUISystem::UserAction = it) |
By
= switch (GLTSpsrem:: UserAcuon) |
{B1) Define new & Bepiny creating o new Hevo Balf
Hero Ball case LTS ystem; :LefiMouse Button Down
HeroBall = CreateHeroBalli) A bera nof dn ATWardBally ser
DefiningNewHernBall = true
(Bi-1} Suppon

for drag actions

{B1-2) Implicit
Action

(B2} Select
current Hero Ball

{B3): Set Hero
Hall Velocity

(B4} Undefined
dctions s bgnored

)y

(B

(DI} Draw the
new Hero Ball

(Ex:

A Deigs ot thie new Hern Ball

case GLUISpaewe:: LeftMouse Buron Drog:
RefineRadiusAndVelocityC{HeroBallf }
SetSliderBassWithHeroBallVelocity)

A Finlshey creating the nrw Here Ball
case GUISpstem:: LefiMouseButton U p:
InsertHersBallTo AlIWoridBalls §

DefiningNewHeroBall = false

A Selecty g cwrvent oo ball
case GLSyvrem:; RighthosseButtonDown:
HeroBall = SelectHeroBallBased OnCurreniMouse XY)
if (HeroBall 1= null}
SetShiderBarsWithHeroBallVelocing)

A Beww Beva velocine with slider bavs
cane FLUIS e Slider BarChange:
if {HeraBall 1= null}
SetHeroBallVelociyWithSliderBarValues()

A dgnorex all other wwser actions v.g Morse Move with no batters, ere
defaul:
1 el e il e A i)

4 Move balls by velfocities wder graviny and remeve off-screen omes
If{ OperatingSystem::SufficientClockTimeHasElapesd)
U pakateSimubation)

DrawBalls{ AW orldBalls)

& D the e Hlewver Ball tha is currenily heing defined
if (DefiringNewHeroBall)

DrzwBalls(HeroBall)

EchoToSwtusBar() & Sets Steatus Sare with surchir of batls cnrvensfy on sooeen

1 & end afwhifer Userdetion "= (i)
| e o male() fierctfon, Program feroninates,

Figure 18.4. Frogramming solution based on the control-driven programming model.

processor, our typical work pattern consists of bursts of typing/editing followed
by periods of reading (with no input action). In our example application, we
can expect the user to drag out some circles and then observe the free-falling of
the circles. The continuous while-loop polling of user commands in the main()
function means that when the user is not performing any action, our program will

408 18. Building Interactive Graphics Applications

still be actively running and wasting machine resources. During activity bursts,
at the maximum, users are capable of generating hundreds of input actions per
second (e.g., mouse-pixel movements per second). If we compare this rate to the
typical CPU instruction capacities that are measured at 10" per second, the huge
discrepancy indicates that, even during activity bursts, the user command-parsing
switch statement {(B) is spending most of the time in the default case not doing
anything.

Complexity Concerns. Notice that our endire solution is in the main|) function.
This means that all relevant user actions must be parsed and handled by the user
command-parsing switch statement (B). In a modem multi-program shared win-
dow environment, many actions performed by users are actually non-
application specific. For example, if a user performs a left mouse button click or
drag in the drawing area of the program window, our application should react by
dragging out a new HeroBall, However, if the user performs the same actions in
the title area of the program window, our application should forward these actions
to the GULOperating/Window system and commence the coordination of moving
the entire program window. As experienced users in window environments, we
understand that there are numerous such non-application specific operations, and
we expect all applications to honor these actions (e_g., iconize, re-size, raise or
lower a window, etc.). Following the solution given in Figure 18.4, for every user
action that we want to honor, we must include a matching supporting case in the
parsing switch statement (B). This requirement quickly increases the complexity
of our solution and becomes a burden to implementing any interactive applica-
tions.

An efficient GUI system should remain idle by default (not taking up ma-
chine resources) and only become active in the presence of interesting activities
fe.g.. user input actions). Furthermore, to integrate interactive applications in
sophisticated multi-programming window environments, it is important that the
supporting GUI system automatically takes care of mundane and standard user
actions.

18.2.2 Event-Driven Programming

Event-dniven programming remedies the efficiency and complexity concerns with
a default MainEventLoop() function defined in the GUI system. For eveni-driven
programs, the MainEventLoop() replaces the main{) function, because all pro-
grams start and end in this function. Just as in the case of the main() func-
tion for control-driven programming, when the MainEventLoop() function re-

18.2. Programming Models 409
UiSystem:: MainEventLoop() |
Sysiem Initealizationi
(A For appHeation A Far initiglizatiens of application siate aond
initialization A registration af ¢vnm service roRnines
loop forever |
! s
ﬂfm WaitFor | GUISystem: NexiEvent)
& Prograws will stop and wail for the sext event
switch | GUISystem: NexiEvent) |

(Ck Stop and wait
for next event case GLISpsteme:: LefiMouseButtonDown;

il (user application registered for this event)

Exgcute user defined service routine,
{DY; Central parsing else
swiich statement Execute default LITSystern routine.
case GLUiSystem::lvonmze;
if (user application registesed for this event)
: Execute wer defined service routine,
Every possible else
event GLISystem:: DefaulilconizeRehavion)
| e of switchiGUESystem - NexiEvent)
Vo end of loap forever
| ¥ end of GUISystenz: MalnEvemtLoopi) franctiven, Progrom tevminates

Figure 18.5. The default MainEveniLoop function.

turns, all work should have been completed, and the program terminates. The
MainEventLoop|) function defines the central control structure for all event-driven
programming solutions and typically cannot be changed by a user application. In
this way, the overall control of an application is actually external to the user’s
program code. For this reason, event-driven programming is also referred to as
the external control model.

Figure 18.5 depicts a typical MainEventLoop() implementation. In this case,
our program is the user application that is based on the MainEventLoop() func-
tion. Structurally, the MainEventloop() is very similar to the main() function
of Figure 18.4: with a continuous loop (B) containing a central parsing swilch
statement (D). The important differences between the two functions include:

e (A) Systemlnitialization(): Recall that eveni-driven programs start and end
in the MainEveniLoop() function. Svsteminitialization() is a mechanism
defined to invoke the user program from within the MainEventLoop(). It
is expected that user programs implement Sysreminitialization() to initial-
ize the application state and to register event service routines (refer to the
discussion in (D).

i

410 18. Building Interactive Graphics Applications

s (B) Continuous outer loop: Since this is a general contrel structure to be
shared by all event-driven programs, there is no way to determine the termi-
nation condition, User program are expected to override appropriate event
service routines and terminate the program from within the service routine.

e (C) Stop and wait: Instead of actively polling the user for actions (wast-
ing machine resources), the MainEventLoop) typically stops the entire
application process and waits for asynchronous operating system calls to
re-activate the application process in the presence of relevant user actions.

e (D) Events and central parsing switch statement: [ncluded in this statement
are all possible actions/events (cases) that a user can perform. Associated
with each event (case) is a default behavior and a toggle that allows user
applications to override the default behavior. During Svsteminitialization(),
the user application can register an alternate service routine for an event by
togeling the override.

To develop an event-driven solution, our program must first register event service
routines with the GUI system. After that, our entire program solution is based on
waiting and servicing vser events. While control-driven programming solutions
are based on an algorithmic organization of control structures in the main() func-
tion, an event-driven programming solution is based on the specification of events
that cause changes to a defined application state. This is a different paradigm for
designing programming solutions. The key difference here is that, as program-
mers, we have no explicit control over the algorithmic organization of the events:
over which, when, or how often an event should occur,

The program in Figure 18.6 implements the left mouse button operations for
our ball shooting program. We see that during system initialization (A), the pro-
gram defines an appropriate application state (A1) and registers left mouse button
{(LMB) down/drag/up events (A2). The corresponding event service routines (D1,
D2, and D3) are also defined. At the end of each event service routine, we redraw
all the balls to ensure that the user can see an up-to-date display at all times. No-
tice the absence of any control structure organizing the initialization and service
routines. Recall that this is an event-driven program: the overall control structure
is defined in the MainEventLoop which is external to our solution.

Figure 18.7 shows how our program from Figure 18.6 is linked with the pre-
defined MainEventLoop() from the GUI system. The MainEventLoop|) calls the
Systemfnirialization|) function defined in our solution (A}, As described, after
the initialization, our entire program is essentially the three event service rou-
tines (D1, D2, and D3). However, we have no control over the invocation of
these routines. Instead, a user performs actions that trigger events which drive

18.2. Programming Models 411

{A) 8 it H

(AL Define Application State:
All'WorldBalls: A set of defined Balls, mitinlze 1o empiy
HeraBall: current setive hall, imitialize o null

(AZ) Regivter Evenl Service Routines
Register for: Lefit Mouse Button Down Event
Register for: Left Mowse Button Drag Event
Regsster for: Lefi Mowse Button Up Event
¥ W wore gt Mrese everres, o o i shioe evewis happen

{I¥) Events Services:
(D) Lt Mouse Button Bown service routine for thix event
HeroBall = Create o new bali 6t curment mouss position
Draw AliBalls{ AW orldBalls, HeraBally & Bveew el halfs flseficling HeroSaill

{D2): Left Mouse Button Demg service rontioe for ohis esvend
RefineRadius AndVelocityOfHeroBall |
DrawAllBallsi AINWorldBalls, HeroBall} & Drew all balls fnfuceling HeraBalll

(D33 Left Mouse Button Up & sevrvilee rontine fie thix even
InseriHeroBal I ToAl Wor ldBalls] |
Diraw Al Balls{ AW orldBalls, null) o Drerw el oty

Figure 18.6. A simple event-driven program specification.

these routines. These routines in turn change the application state. In this way,
an evenl-driven programming solution is based on specification of events (LMB
events) that cause changes to a defined application state { AllWorldBalls and Her-
oBall}, Since the user command parsing switch statement (I in Figure 18.7) in the
MainEventLoop() contains a case and the corresponding default behavior for ev-
ery possible user actions, without any added complexity, our solution honors the
non-application specific actions in the environment (e.g., iconize, moving, etc),

In the context of event-driven programming., an event can be perceived as
an asynchronous notification that something interesting has happened. The mes-
senger for the notification is the underlying GUI system. The mechanism for
receiving an event 15 via overriding the corresponding event service routine.

For these reasons, when discussing event-driven programming, there is al-
ways a supporting GUI system. This GUI system is generally referred (o as
the Graphics User Interface {GUT) Application Programming Interface (API),
Examples of GUI APIs include; Java Swing Library, OpenGL Utility
ToolKit (GLUT), The Fast Light ToolKit { FLTK), Microsoft Foundation Classes
{(MFC), elc.

From the above discussion, we see that the registration for services ol appro-
priate events is the core of designing and developing solutions for event-driven
programs. Before we begin developing a complete solution for our ball shooting
program, let us spend some time understanding events.

L 412 18. Building Interactive Graphics Applications

r:" LTS ystems: Mt Eventlog) | Al

Systeminnialtzationd)
This wild conl ther s clefireed frovs v ()
lonp forever |
WaitFwr { GUISystem: NexiFvent] | iy
A Procezs will st ama want frer the next evev
switch (G Srtem NextEvent) | oy

Pre-efined GLI case (T SpxnemasLeftMouse Batton Dwm:
wwmtem fhinctian Il {user application registered for this event)
Prrveke LefiMaouseButicnDisnSeracelosting cumentdousePositiom | 4=

o

el
Espcute defauls GLISyssem routime.
ense FLRSpmremeLefiviouse ButionDrag: o2y
AF fuser application regisiersd for this evend |
Frveke LefiMouseButtonDragServiceRoinme currepMousePesition § €
ke
Exgcute defouls GLISyssem routine.
ense GRS reme:lefiose ButionLip: 03
IT sty application reghstenod for this event)
Frveke LenMouseBunionlipServiceRoutingd cureniMousePosition | |

ehae
Execmie defiuls GLISystem routime.
DA e e mmany atler oveniy B et e comeoTre uy
| el o it oL ISt Nt Event) i -
i i el af oo forevee Eslablish these links
| ¥ el et G ESpmtemes MadaF vearLaog | funcrian. Prograe iermmiieiel,
ﬁ,mmummm { i)

WA Deflne Applivaion St
AllWorkiiall: A et of defised Halls, indtiakze to ampay

HeroBall = null
S A2 Reygisier Evewt Service Rourines
FEI GRSyt RegisterSeryice Routine] G st LMBIawn, LMBDoneRoubine

G ESynemes s RegismerSery e Rouring G vamess:: LMRDrag, LMBDragRouing
G peremer RegiserServiceRoutine| (U sremz: LMBLUp, LMEUpRowtine)
AEAR wiawely fov: Lol Mvawe Surton

I

< A Event Servive Rontines (1)
LMBDown R natlne mausePosition) G Lofe Mg Bivsw Down servioe romtine. €—
Herafiall = pew ball at meatsePosition
Do ABalls AHWorkdBalls, HeroBally Deawe ali bl l'.lm'_l'm.l'mg Hevefali

LMBDragBoutine mvowsePosition | T Left Mowere Butsir Drag service muting 4=
RefineRadinsAndyelociyOfHeroBaly mousePositan |
Divaw ARBadlg AlWarldBalls, HeroBall) & Drew af! furlly dinfaceling Hernfally

thlil'iﬂ.lul.hﬂ muuseMasition) 2 Left Monse Suvan Up xervice nowtine -
InsertHeroBall ToAlRWarl @Balks)
Dieaw aliBallsl AlTW orldBalls, nulli A Brarw gl Burlly

Figure 18.7. Linking MainEventLoop with our solution,

Graphical User Interface (GUI) Events

In general, an application may receive events generated by the user, the applica-
tion itself, or by the GUI system. In this section, we describe each of these event
sources and discuss the application’s role in servicing these events.

S1: The User. These are events triggered by the actions a user performs on the
input devices, Motice that input devices include actual hardware devices (e.g.,

18.2. Programming Models 413

mouse, keyboard, etc.) and/or software-simulated GUI elements {e.g., slider bars,
combo boxes, etc.). Typically, a user performs actions for two very different
reasons;

o Sla: Application specific. These are input actions that are part of the
application. Clicking and dragging in the application screen area lo creale a
HeroBall is an example of an action performed on a hardware input device.
Changing the slider bars to control the HeroBali's velocity is an example of
an action performed on a software-simulated GUI element. Both of these
actions and the resulting events are application specific: the application {our
program} is solely responsible for servicing these events.

e S1b: General. These are input actions defined by the operating environ-
ment. For example, a user clicks and drags in the window title-bar area
expecting to move the entire application window. The servicing of these
types of events reguires collaboration between our application and the GUI
system. We will discuss the servicing of these types of events in more detail
when explaining events that originate from the GUI system in S3c.

MNotice that the meaning of a user’s action is confext sensitive. [t depends on where
the action is performed: click and drag in the application screen area vs. slider
bar vs. application window title-bar area. In any case, the underlying GUI system
is responsible for parsing the context and determining which application element
receives a particular event.

52: The Application. These are events defined by the application, typically de-
pending on some run-time conditions. During run time, if and when the condition
is favorable, the supporting GUI system triggers the event and conveys the favor-
able conditions to the application, A straightforward example is a periodic alarm.
Modern GUI systems typically allow an application to define (sometimes multi-
ple} rimer events . Once defined, the GUI system will trigger an event to wake
up the application when the timer expires. As we will see, this timer event is es-
sential for supporting real-time simulations, Since the application (our program)
requested the generation of these types of events, our program is solely respon-
sible for serving them. The important distinction hetween application-defined
and user-generated events is that application-defined events can be spontaneous:
when properly defined, even when the user is not doing anything, these types of
events may trigger.

83: The GUI System. These are events that originate from within the GUI
system in order to convey state information to the application. There are typically

414 18. Building Interactive Graphics Applications

three reasons for these events:

o S3a: Internal GUI states change. These are events signaling an internal
state change of the GUI system. For example, the GUI system typically
generates an event before the creation of the application’s main window.
This provides an opportunity for the application to perform the correspond-
ing initialization. In some GUI systems (e.g., MFC) the Systeminitialization()
functionality is accomplished with these types of events: user applications
are expected to override the appropriate windows” creation event and ini-
tialize the application state. Modern, general purpose commercial GUI
systems typically define a large number of events signaling detailed siate
changes in anticipation of supporting different types of applications and re-
guirements. For example, for the creation of the application’s main window,
the GUI system may define events for the following states:

- before resource allocation;
— after resource allocation but before initalization;

— after initialization but before initial drawing, etc.

A GUI system usually defines meaningful default behaviors for such events.
To program an effective application based on a GUI system, one must un-
derstand the different groups of events and only service the appropriate
selections,

= 53h: External environmentl requests attention. These are events indi-
cating that there are changes in the operating environment that potentially
require application attention. For example, a user has moved another ap-
plication window to cover a portion of our application window, or o user
has minimized our application window, The GUI system and the window
environment typically have appropriate service routines for these types of
events. An application would only choose: to service these events when
special actions must be performed, For example, in a real-time simulation
program, the application may choose to suspend the simulation if the appli-
cation window is minimized. In this situation, an application must service
the minimized and the maximized events.

s S53c: External environment requests application collaboration. These
are typically events requesting the application’s collaboration to complete
the service of general user actions (please refer to S1h). For example, if
a user click-drags the application window's title bar, the GUI system re-
acts by letting the user “drag” the entire application window. This “drag”

18.2. Programming Models 415

operation is implemented by continuously erasing and redrawing the entire
application window at the current mouse pointer position on the computer
display. The GUI system has full knowledge of the appearance of the ap-
plication window (e.g., the window frames, the menus, etc.), but it has no
knowledge of the application window content {e.g., how many free falling
balls traveling at what velocity, etc.). In this case, the GUI system redraws
the application window frame and generates a Redraw/Paint event for the
application, requesting assistance in completing the service of the user's
“drag” operation. As an application in a shared window environment, our
application is expected to honor and service these types of events. The most
common events in this category include: Redraw/Paint and Resize. Re-
draw/Paint is the single most important event an application must service,
because it supports the most common operations a user may perform in a
shared window environment. Resize is also an important event to which
the application must respond because the application is in charge of GUI
element placement policy (e.g., if window size is increased, how should the
GUIT elements be placed in the larger window).

18.2.3 The Event-Driven Ball Shooting Program

In Section 18.2.1, we started a control-driven programming solution to the ball
shooting program based on verbalizing the conditions (controls) under which the
appropriate actions should be taken:

while favorable condition, parse the input ...

As we have seen, with appropriate modifications, we were able to detail the con-
trol structures for our solution,
From the discussion in Section 18.2.2, we see that to design an event-driven

Prog

1

b

3

4,

The

ramming solution we must

. define the application state;

. describe how user actions change the application state;

map the user actions to events that the GUI system supports; and
override corresponding event service routines to implement user actions.

specification in Section 18.1 detailed the behaviors of our ball shootling pro-

gram. The description is based on actions performed on familiar input devices

418 18. Building Interactive Graphics Applications

{e.g.. slider bars and mouse) that change the appearance on the display screen.
Thus, the specification from Section 18.]1 describes items (2) and (3) from the
above list without explicitly defining what the application state is, Our job in de-
signing a solution is to derive the implicitly defined application state and design
the appropriate service routines.

Figure 18.8 presents our event-driven programming solution. As expected,
the application state (Al) is defined in SvsremInitialization(). The AllWorldBalis
set and HeroBall can be derived from the specification in Section 18.1. The Defin-
ingNewHeroBall flag is a transient (temporary) application state designed to sup-
port user actions across multiple events (click-and-drag). Using rransient appli-
cation states is a common approach to support consecutive inter-related events,

Figure 18.8 shows the registration of three types of service routines (A2):

» user-generated application specific events (51a);
 an application defined event (52},
» a GUI system-generated event requesting collaboration (53c).

The timer event definition (A2S2) sets up a periodic alarm for the application to
update the simulation of the free falling balls. The service routines of the user-
generated application specific events (D1-D5) are remarkably similar to the cor-
responding case statements in the control-driven solution presented in Figure 18.4
(B1-B3). It should not be surprising that this is so, because we are implement-
ing the exact same user actions based on the same specification, Line 3 of the
LMBDownRoutine() (D1L3) demonstrates that, when necessary, our application
can request the GUI system 1o initiate events. In this case, we signal the GUI
system that an application redraw is necessary, Notice that event service routines
are simply functions in our program. This means, at DIL3 we could also call
RedrawRoutine() (D7) directly. The difference is that a call to RedrawRoutine|)
will force a redraw immediately while requesting the generation of a redraw event
allows the GUI system to optimize the number of redraws. For example, if the
user performs a LMB click and starts dragging immediately, with our D] and D2
implementation, the GUI system can gather the many GenerateRedrawEvent re-
quests in a short period of time and only generate one re-draw event. In this way,
we can avoid performing more redraws than necessary.

In order 1o achieve a smooth animation, we should perform about 2040 up-
dates per second. It tollows that the SimudationUpdatelnterval should be no more
than 50 milliseconds so that the ServiceTimer() routine can be invoked more than
20) nmes per second. (Notice that a redraw evenl is requested at the end of the
ServiceTimer() routine.) This means, al the very least, our application is guaran-
teed to receive more than 20 redraw events in one second. For this reason, the

18.2. Programming Models 417

SystemInitialization() | &) d f
& (A1) Diefine Application Stave g;;nw'ﬂ“
AlWorldBalls: A set of defined Balls, initialze o empty
HeraBall = null
DefiningMewHeroBall = folse

(AR Register Event Service Rontines
& &l Application Specific User Events
GUTSystem:: RegisterServiceRoutine(GLESysrems: LMBDown, LMBDownRoutine)
+ Defi GLUISystem: - RegisterServiceRoutine{ GUISrem:: LMBDrag, LMBDagRoutine)
AZSL: Defines oy i e RegisterServiceRowine GUSystens:: LMBUp, LMBUpRoutine)
alimer Eveml crycecum: RegisterServiceRoutine(GUISystem:: RMBDown, RMBDownRoutine)
G psrem : RegisterServiceRowtine (G IS psremi:: SliderBar, SliderBarRoutine)
! & Applicatien Define Event
GL IS ystem s Define Timer Period(Simuwlarion Update Ingerval)
GUESystem:: RegisterServiceRoutine{ LIS ysrem:: TimerEvent, ServiceTimer)
o Trigmeers ThnerEvent every: Stomdation Uipdaelnerval period
W 83 Honar collabaration reguest from the GUT sywren
GUISystem: - RegisterServiccRoutine{ G ESystem:: RedrawEvent, RedrawRoutine)
|

& Event Seevice Boulines ()

LMBDownRoutine] mousePosition) 0 DI Left Mowse Suston Dowe sevvice roufing
HeraBall = CreateHeroBall { mousePosition) DIL3: Force o
DefiningMewHeraBall = true Red ! Event
GlUTSystem: :Genernte Redraw Event

LMBDragRoutine] mousePosithon) 0 D2y Lefi Munse Burton Dirage service vomling
RefineRadius AndVelocityOiHeroBalll mousePosition)
SetSliderBursWithHeroBall Velocityi)

GLISpsvem :Generate Redraw Event N iFenerates @ redraw event

LMBUpRouting] mousePosition) A B3y Left Monse Baitonr Up gervice roailing
InsertHeroBall To Al WorldBalls(}
DefiningNewHeroBall = false

RMBDownRoutine { mousePosithen § 0 D4 Bl Mosese Butent Dowe pervior rointing
HeroHall = SelectHeroBall BasedOn (mowsePosition)
if (HemBall = null) SetSliderBarsWithHeroBallVelocity()

SliderBarRoutine { siderBorValues } 05 Sl Sar chamges somdoe routine
if {HezoBall 1= mull}
SetSliderBarsWithHeroBallVetocing stiderBarValues)

ServiceTimer () A Dy Timer expived service ronting
UpdateSimulation(| A Move balls by velocities and remove offscreen ones
EchoToSttusBar() N Bets stanen Bore with oo af Balls o sereen
GLTSysten:: GenerateRedrawEvent N Gereraies o redvow svent
if{HeroBall 1= mell) A Reflect propoer HeroBall vlocity
SetSliderBarsWithHeroBall Velocity sliderBaryahees §
RedrawHoutine {) A7 Redeaw pvemt sorvice roumme
Draw Ballst Al WorldBalls)
if { DefiningMewHeroBall)
DrmwBalls(Herofally A Edranw she mew Hlere Ball that i beimg defimed

Figure 1B.8. Programming solution based on the event-driven programming model.

418 18. Building Interactive Graphics Applications

GrenerateRedrawEvent requests in D] and D2 are really not necessary. The ser-
vicing of our timer events will guarantee us an up-to-date display screen at all
times,

18.2.4 Implementation Notes

The application state of an event-driven program must persist over the entire life
time of the program. In terms of implementation, this means that the application
state must be defined based on variables that are dynamically allocated during run
time and that reside on the heap memory, These are in contrast to local variables
that reside on the stack memory and which do not persist over different function
invocations.

The mapping of user actions to events in the GUI system often resulls in im-
plicir andfor undefined events. In our ball shooting program, the actions to define
a HeroBall involve left mouse button down and drag. When mapping these ac-
tions to events in our implementation {in Figure 18.4 and Figure 18.8), we realize
that we should also pay attention to the implicit mouse button up event. Another
example is the HeroBall selection action: right mouse button down. In this case,
right mouse button drag and up events are not serviced by our application, and
thus, they are undefined (to our application).

When one user action (e.g., “drag out the HeroBall™) is mapped to a group
of consecutive events (e.g., mouse buttom down, then drag, then up) a finite state
diagram can usually be derived to help design the solution. Figure 18.9 depicts
the finite state diagram for defining the HeroBall in our ball shooting program.

Application peopal 0 HeoBall . Defining

State ! Center i Veloeity & i HeroBall
Size

Figure 18.9. State diagram for defining the HeroBall.

18.2. Programming Models 419

The left mouse button down event puts the program into State | where, in our
solution from Figure 18.8, LMBDownRoutine() implements this state and defines
the center of the HeroBall, etc. In this case the transition between states is trig-
gered by the mouse events, and we see that it is physically impossible 1o move
from State 2 back to State 1. However, we do need 1o handle the case where the
user action causes a transition from State | to State 3 directly (mouse button down
and release without any dragging actions). This state diagram helps us analyze
possible combinations of state transitions and perform appropriate initializations.

Event-driven applications interface with the user through physical (e.g., mouse
clicks} or simulated GUI elemenis (e.g., quit button, slider bars). An input GUI
element {e.g., the quit button) is an artifact (e.g..-an icon) for the user to direct
changes to the application state, while an output GUI element {e.g.. the status
bar) is an avenue for the application to present application state information o
the user as feedback. For both types of elements, information only flows in one
direction—either from the user to the application (input) or from the application
to the user (output). When working with GUI elements that serve both input and
outpul purposes, special care is required. For example, after the user selects or
defines a HeroBall, the slider bars reflects the velocity of the free falling HeroBall
(output), while at any time, the user can manipulate the slider bar to alter the Her-
aBall velocity (input). In this case, the GUI element's displayed state and the ap-
plication’s internal state are connected, The application must ensure that these two
states are consistent, Notice that in the solution shown in Figure 18.4, this state
consistency is nol maintained. When a user clicks the RMB (B2 in Figure 15.4)
to select a HeroBall, the slider bar values are updated properly; however, as the
HeroBall free falls under gravity, the slider bar values are not updated. The so-
lution presented in Figure 18.8 fixes this problem by vsing the ServiceTimer()
function.

Ewvent service routines are functions defined in our program that cause a call-
back from the MainEventLoop in the presence of relevant events. For this reason,
these service routines are also referred 1o as calfback functions. The application
program registers callback functions with the GUI system by passing the address
of the function to the GUT system. This is the registration mechanism implied in
Figure 18.7 and Figure 18.8. Simple GUI systems (e.g.. GLUT or FLTK} usually
support this form of registration mechanism. The advantage of this mechanism is
that it is easy to understand, straightforward to program, and ofien contributes to
a small memory footprint in the resulting program. The main disadvaniage of this
mechanism is the lack of organizational structure for the callback functions.

In commercial GUI systems, there are 3 large numbers of events with which
user applications must deul, and a structured organization of the service routines
can assist the programmability of the GUT system. Modern commercial GUIT sys-

420 18. Building Interactive Graphics Applications

tems are often implemented based on object-oriented languages (e.g., C++ for
MFC, Java for Java Swing). For these systems, many event service registrations
are implemented as sub-classes of an appropriate GUT system class, and they over-
ride corresponding virtual functions. In this way, the event service routines are
organized according to the functionality of GUI elements. The details of different
registration mechanisms will be explained in Section 18.4.1 when we describe the
implementation details.

Event service routines (or callback functions) are simply functions in our pro-
gram, However, these functions also serve the important role as the server of
external asynchronous events. The following are guidelines one should take into
account when implementing event service routines:

l. An event service routine should only service the triggering event and imme-
diately return the control back to the MainEventLoop(). This may seem to
be a “no-brainer.” However, because of our familiarity with control-driven
programming, it is often tlempting to anticipate/poll subsequent events with
a control structure in the service routine. For example, when servicing the
left mouse burton down event, we know that the mouse drag event will hap-
pen next. After allocating and defining the circle center, we have properly
initialized data to work with the HeroBall object. It may seem easier to
simply include a while loop to poll and service mouse drag events. How-
ever, with all the other external events that may happen (e.g., timer event,
external redraw events, etc.), this monopolizing of control in one service
routine is not only a bad design decision, but also it may cause the program
to malfunction.

2. An event service routine should be srateless, and individual invocations
should be independent. In terms of implementation, this essentially means
event service routines should not define local sravic variables that record
data from previous invocations. Because we have no control over when,
or how often, events are triggered, when these variables are used as data,
or conditions for changing application states, it can easily lead to disas-
trously and unnecessarily complex solutions. We can always define extra
state variables in the application state to record temporary state information
that must persist over multiple event services. The DefiningNewHeroBall
flag in Figure 18.8 is one such example.

3. An event service routine should check for invocation conditions regard-
less of common sense logical sequence. For example, although logically,
a mouse drag event can never happen unless & mouse down event has al-
ready occurred, in reality, a user may depress a mouse button from outside

18.3. The Modelview-Controller Architectura 421

of our application window and then drag the mouse into our application
window. In this case, we will receive a mouse drag event without the cor-
responding mouse down event. For this reason, the mouse drag service
routine should check the imvocarion condition that the proper initialization
has indeed happened. Notice in Figure 18.8, we do not include proper in-
vocation condition checking. For example, in the LMBDragRourine(), we
do not verify that LMEDownRotine() has been invoked (by checking the
DefiningNewHeroBall flag), In a real system, this may causes the program
to malfunction and/or crash.

18.2.5 Summary

In this section we have discussed programming models or strategies for organiz-
ing statements of our program. We have seen that for interacrive applications,
where an application continuously waits and reacts Lo a user’s input actions, or-
ganmizing the program statements based on designing control structures resulis in
complex and inefficient programs, Existing GUI systems analyze all possible
user actions, design control structures 1o interact with the user, implement default
behaviors for all user actions, and provide this functionality in GUI APls. To
develop interactive applications, we take advantage of the existing control struc-
ture in the GUI API (i.e., the MainEventLoop()) and modily the default behaviors
{via event service routines) of user actions, In order to properly collaborate with
existing GUI APIs, the strategy for organizing the program statements should be
based on specifying user actions that cause changes to the application state.

MNow that we understand how to organize the statements of our program, let's
examine strategies for organizing functional modules of our solution.

18.3 The Modelview-Controller Architecture

The event-driven ball shooting program presented in Section 18.2.3 and Fig-
ure 18.8 addresses programmability and efficiency issues when interacting with a
user. In the development of that model, we glossed over many supporting func-
tions (e.g.. UpdateSimulation()) needed in our solution. In this section, we de-
velop strategies for organizing these functions. Notice that we are not interested
in the implementation details of these functions. Instead, we are interested in
grouping related functions into components. We then pay attention to how the
different components collaborate to support the functionality of our application,

422 18. Building Interactive Graphics Applications

In this way, we derive a framework that is suitable for implementing general in-
teractive graphics applications. With a proper framework guiding our design and
implementation, we will be better equipped to develop programs that are easier o
understand, maintain, modify, and expand.

18.3.1 The Modelview-Controller Frameawork

Based on our experience developing solutions in Section 8.2, we understand that
interactive graphics applications can be described as applications that allow users
to interactively update their internal states. These applications provide real-time
visualization of their internal states (e.g., the free-falling balls) with computer
graphics (e.g., drawing circles). The modelview-controlfer (MVC) framework
provides a convenient structure for discussing this type of application. In the
MVC framework, the medel is the application state, the view is responsible for
setting up support for the model to present itsell 1o the user, and the contraller
is respansible for providing the support for the wser o interact with the model,
Within this framework, our solution from Figure 18.8 is simply the implementa-
tion of a controller. In this section, we will develop the understanding of the other
two components in the MVC framework and how these components collaborate
to support interactive graphics applications,

Figure 18.10 shows the details of a MVC framework to describe the behavior
of a typical interactive graphics application. We continue to use the ball shooting
program as our example 1o illustrate the details of the components. The top-right
rectangular box is the model, the bottom-right rectangular box is the view, and
the rectangular box on the left is the controller compenent. These three boxes
represent program code we, as application developers, must develop. The two
dotted rounded boxes represent external graphics and GUI APIs, These are the
external libraries that we will use as a base for building our system, Examples of
popular Graphics APIs include OpenGL, Microsoft Direct-3D (D3D). Java 3D,
ameng others. As mentioned in Section 18.2.2, examples of popular GUI APIs
include GLUT, FLTK, MFC, and Java Swing Library,

The model component defines the persistent application state (e.g., AllWorld-
Balls. HeroBalls, etc.) and implements interface functions for this application
state (e.z., UpdateSimulation{)). Since we are working with a “graphics™ ap-
plication, we expect graphical primitives to be part of the representation for the
application state (e.g., CirclePrimitives). This fact is represented in Figure 18.10
by the application state (the ellipse} partially covering the Graphics API box. In
the rest of this section, we will use the terms model and persistent application
state interchangeably.

18.3. The Modelview-Controller Architecture 423

External Model
Evonty Erssgam cods lor changing snollcaton state
[rP—=———r
~..Controller . T e ok by s
[5 * * iqutlake st) i Ay g
1 MainEventLoop() I
' (GUL APE) ! [
I I 5 Notren e oot sy wiverit
Urogram sesbe fram snbutinn in Flgure & TR
LABTessMputine] masschmitiae |
1 o Pt Horulicef e aaed des
i Al oekilBalls, HeroBall,
DefinirgMew Heenbiall
[} By Thewer
paebipalinend 3]
BT Ty rre— I - !
iWeHmeall = aaili View | (6@ OpealL, DireciX-30, elit) |
i SideiFlars = ChetereVchoritel} H
Ersgrum ods for drawing uslag Graphio AF] |/

DirawVics) ¢ Direvee s stk wisles repios
TreasdarmPalnis)l © winkie © 7 Flew gl

o AT A ik FATRE E T
< et ey Y

Figure 18.10. Components of an interactive graphics application.

The view component is in charge of drawing to the drawing area on the ap-
plication window (¢.g., drawing the free falling balls). More specifically, the view
component is responsible for initializing the graphics API transformation such
that drawing of the model’s graphical primitives will appear in the appropriate
drawing area. The arrow from the view to the model component signifies that the
actual application state redraw must be performed by the model component. Only
the model component knows the details of the entire application state (e.g., size
and location of the free falling circles) so only the model component can redraw
the entire application, The view component is also responsible for transform-
ing user mouse click positions to a coordinate system that the model understands
{e.g.. mouse button clicks for dragging out the hero ball).

The top left external events arrow in Figure 18,10 shows that all external
events are handled by the MainEventLoop(). The relevant events will be for-
wirded to the event service routines in the controller component. Since the con-
trofler component is responsible for interacting with the user, the design is typi-
cally based on event-driven programming techniques. The solution presented in
Section 18.2.3 and Figure 18.8 is an example of a controller component imple-
mentation. The arrow from the controller to the model indicates that most external
events eventually change the model component (e.g., creating a new HeroBall or
changing the current HeroBall velocity). The arrow from the controller to the
view component indicates that the user input point transformation is handled by
the view component. Controllers typically return mouse click positions in the de-
vice coordinate with the origin at the top-left corner. In the application model, it is
more convenient for us to work with a coordinate system with a lower-lefi origin.

424 18. Building Interactive Graphics Applications

The view component with its transformation functionality has the knowledge to
perform the necessary transformation,

Since the model must understand the transformation set up by the view, it is
important that the model and the view components are implemented based on the
same Graphics API, However, this sharing of an underlying supporting API does
not mean that the model and view are an integrated component. On the contrary,
as will be discussed in the following sections, it is advantageous to clearly dis-
tinguish between these two components and to establish well-defined interfaces
between them.

18.3.2 Applying MVC to the Ball Shooting Program

With the described MVC framework and the understanding of how responsibili-
ties are shared among the components, we can now extend the solution presented
in Figure 18.8 and complete the design of the ball shooting program.

The Model

The model is the application state and thus this is the core of our program. When
describing approaches to designing an event-driven program in Section 18.2.3,
the first two points mentioned were:

1. define the application state, and
2, describe how a user changes this application state.

These two points are the puidelines for designing the model component. In
an object-oriented environment, the model component can be implemented as
classes, and srate of the application can be implemented as instance variables,
with “how a user changes this application state” implemented as methods of the
classes,

Figure 18.11 shows that the instance variables representing the state are typ-
ically private to the model component. As expected, we have a “very graphical”
application state. To properly support this state, we define the CirclePrimitive
class based on the underlying graphics APL The CirclePrimitive class supports the
definition of center, radius, drawing, and moving of the circle, etc. Figure 18.11
also shows the four categories of methods that a typical model component must

support:

18.3. The Modelview-Controller Architecture

425

class ApplicationModel {
private;

& Applicanion s privade signe

vector<CirchePrimitive= AllWorkdBalls

CirclePrimitive HeruBall

ool DefiningMewHero 4 LB dray is frue

prubilic;
beal 1=DefmningHeroBatl{)

A LA slrag By fruee sowe s 1w aret in
 ehe meicdelle o dfefiing the o onew herg ball

bool HeroBallExestst)
A Crrent fero hall is nor aull

int NumBallsOnScreen|)

A Nuener of hally curvently on soreen

Moat HeroWeloeityXi)

& Hera's velocity, v-componid
foat HeroVelootyY{}

& Hern s velociiy, y-companes

vold CresteHeroBall {mousePosition)

& Creates rew i ball, with center of smeise oo
¥ radiies and velocity are fnithalized 1o zere

void DrigHeroBall To (mouse Pesitin)

A Retine raiding and velocin of eve hall based on
Il ' comted dnd curren! sreniese Pesiibon }

vold SetHeroBallVelocity (velocityX, velocityY)

& Sefs curvent hevo ball vefociny 3. A =phicaion
Vi rhere 5 e careent fere Ball, novhing hoppens sibE changes
from application

void InsertHeroToAll'Workd|) 2venils

A D defiondreg HloroBalll inveet Tnte WorludBollSe
volid SelectHeroBall {mousePosition} <

& Rere korn el po b the one sarretly wneler

¥ wrensene Pt gt de il) pene exvisiy
void UpdateSimulationd])

¥ Move bolls by theie velovitler, spdiate velocity 4. Application

o by gravity s rewene afacreen nnex

void Redraw ApplicationSiate])

¥ Dvenit) v Feeeforllivg bhatls (e liling the HevoBalll
W tee e diesired reging o the prpalicaticee wimdhw,

Class built on
Giruphics AP

A Wearld halls, infrially empn
& The Herg Ball

1. Application
™ state inguires

1. Apphcation
- slabe changes

from user events
~

state visunlization

Figure 18.11. The model component of the ball shoating program.

I. Application state inquiries. These are functions that return the applica-
tion state. These functions are important for maintaining up-to-date GUI
elements (e.g., status echo or velocity shider bars).

2. Application state changes from user evenis. These are functions that
change the application state according to a user’s input actions. Notice that
the function names should reflect the functionality (e.g., CreateHeroBall)
and not the user event actions (e.g., ServiceLMBDown). It is common for
a group of functions to support a defined finite state transition. For exam-

426 18. Building Interactive Graphics Applications

ple, CreateHeroBall, DragHeroBall, and InsertHeroToWorld implement the
finite state diagram of Figure 18.9.

3. Application state changes from application (timer) events. This is a
function that updates the application state resulting from purposeful and
usually synchronous application timer events. For the ball shooting pro-
gram, we update all of the velocities, displace the balls’ positions by the
updated velocities and compute ball-to-ball collisions, as well as remove
off-screen balls.

4. Application state visualization. This i a function that knows how to draw
the application state (e.g., drawing the necessary number of circles at the
corresponding positions). It is expected that a view component will initial-
1ze appropriate regions on the application window, set up transformations,
and invoke this function to draw into the mitialized region,

It is important to recognize that the user’s asynchronous events are arriving in
between synchronous application timer events, In practice, a user observes an
instantaneous application state (the graphics in the application window) and gen-
erates asynchronous events to alter the application state for the next round of
simulation. For example, a user sees that the HeroBall is about to collide with
another ball and decides to change the HeroBall's velocity to avoid the collision
that would have happened in the next round of simulation. This means, before
synchronous timer update, we must ensure all existing asynchronous user events
are processed. In addition, the application should provide continuous feedback to
ensure that users are observing an up-to-date application state, This subtle han-
dling of event arrival and processing order is not an issue for simple, single-user
applications like our ball shooting program. On large scale multi-user networked
interactive systems, where input event and cutput display latencies may be signif-
icant, the UpdateSimulation|) function is often divided into pre-update, update,
and post-update,

The View

Figure 18.12 shows the ApplicationView class supporting the two main func-
tionalities of a view compeonent: coordinate space transformation and initializa-
tion for redraw, As discussed earlier, the controller is responsible for calling the
Device ToWorldXform{) to communicate user input points to the model compo-
nent. The viewport class is introduced to encapsulate the highly API-dependent
device initalization and transformation procedures.

18.3. The Modelview-Controller Architecture 427

class Viewport |
private:
& An aved on application windew fie deawing.
& deiwal implemematton of the wiewpaoer o GraginiesAd P depemdans,

public:
vk EmseViewpor)
A Eraawe the area on the appdicarion windm
void ActivateViewpor ForDrwing()
& Al subsequent Graphics APE draw commanids
A will shew anp oo this vigwpon
i
chags ApphicatienView |
private:

A viewe s pevere store infivennadion

Viewport TargetDrawArea
A A area of the application muon wirdenw st
A i wlew will be drawing o

pulilic:
void DeviceToWarldXform(inputDevicePoint, cutputMadel Poing}
A dransfown it inpnt device ooaralinate goid o
A waetprand greviend I o coovgdimete xpatem than the moded pnderstomdy
v DrawView| ApplicationModel TheModel}

A Erare and activate the TargetDrawAdrea and then
& Bty wap trungfiemiotion foe The Mok
& ealls The Model Drooad pyilicationStane s to draw al] the falls,

I

Figure 18.12. The view component of the ball shooting program.

The Controllers

We can improve the solution of Figure 18.8 to better support the specified func-
tionality of the ball shooting program. Recall that the application window de-
picted in Figure 18.2 has two distinct regions for interpreting events: the upper
application drawing area where mouse button events are associated with defin-
ingfselecting the HeroBall and the lower GUI element area where mouse button
events on the GUI elements have different meanings (e.g., mouse button events
on the slider bars generate SliderBarChange events, etc.). We also notice that the
upper application drawing area is the exact same area where the ApplicationView
must direct the drawings of the ApplicationModel state.

Figure 18,13 introduces two types of controller classes: a ViewController and
a GenericController, Each controller class is dedicated to receiving input events
from the comresponding region on the application window. The ViewController
creates an ApplicationView during initialization such that the view can be tightly
paired for drawing of the ApplicationModel state in the same area. In addition,
the ViewController class also defines the appropriate mouse event service routines
to support the interaction with the HeroBall. The GenericController is meant (o
contain GUI elements for interacting with the application state.

428 18. Building Interactive Graphics Applications

eluas ViewConroller |

private:
Applicationbuodel Thebodeal = pull & Reforemee fo the apgelication stae
Application¥iew TheVeew = mull A o rawiag o e desieaile region
pubslic:
wakd InkthalizeControllen ApplicationMode abModel, andrea) |
- A Define and fitialize the Appiicaniee Srare
ET:T:LH witha TheModel = aModel An aren on the
TheView = 1 Wiew] and lication
Application Sisié lew = mew Applicatvoniow] rew | :f:m

A Regiefer Eveni Service Somims
G TS ptemz: RegiaerService Rouline G LS psfem:: LMBDdwvan, LMBDownRouting |
Creates o new GRS ywiem: RegiserService Rowine G ASpsrem:: LMBDrag, LMBDragRoutine)
View for the GUISystem:: RegiserServiceRoutine) G S pstens:: LMBUp, LMBUpRoutine)
soecified ares GUISysweme:RegiserServiceRoutime! GUISpsteme:: EMBDown, RMBEownB outing)
G pwtems: Registerservice Rouing(GU TS pvtem:: RedrawEvent, RedrowRoutine)
|
" Event Servios Rowines
. aleine the 8 event ronines ximiiae fo the svies in Figure X
|
cluss CrenencContraller |

privite:
Application®Mode] Thebodel = null A Rederence fo thie appdication sioe
pahihe
Conmtroller with vidd InitiatizeConirellen] Applicstonhodel asModel, anArea) |
no Yiew Thehfodel = aMoslel

Regbawr Everd Servioe Routimes
GUISystem: RegisterServceRoutine GLESystem:: StiderBar, SliderBasRoutine
Gl ytens: Dofine TimerPersod] Stenanlaston Updarelntenal)
E!Imﬂzgimuﬁnvbeﬂmﬁlﬂﬁ'ﬂﬂ}mur: TimerEvenl, Service Timer)
! Evens Service Reuflines
4L detine the 2 evewd rownires similor e the omes oy Filgeee 8

P Applicazion
LT APE: MalnEvemibonp vlll coll this fimetion i tnitialize sur applicaitan indrintization
Systeminitialization|) |
Applleation™Model aModel = new ApplicationModeli |
ViewConiraller aViewController = now ViewContraller |
GenerieController aGenericController = new GenenicControllen)

aViewContrller InmialiseConrableriabode]l, drawmgAnea0dWindow)
aGenericConeroller InitializeContmollerahdodel, uiAreaOMWindow)

Figure 18.13. The controller componant of the ball shooting program.

The bottom of Figure 18.13 illustrates that the GUI AP MainEventLoop will
still call the Systemlinitialization() function to initialize the application. In this
case, we create one instance each of ViewController and GenericController. The
ViewController is initialized to monitor mouse button events in the drawing area
of the application window (e.g., LMB click to define HeroBall), while the Gener-
icController is initialized 1o monitor the GUI element state changes (e.g., LMB
dragging of a slider bar). Notice that the service of the timer event is global to the
entire application and should be defined in only one of the controllers (either one
will do).

In practice, the GUI API MainEventLoop dispatches events 1o the controllers
based on the conrext of the eveni. The context of an event is typically defined by

18.3. The Modelview-Controlier Architecture 429

the location of the mouse pointer or the current focus of the GUI element (ie.,
which element is active). The application is responsible for creating a controller
for any region on the window that it will receive events directly from the GUJ
APL

18.3.3 Using the MVC to Expand the Ball Shooting Program

One interesting characteristic of the MVC solution presented in Section 18.3.2
is that the model component does not have any knowledge of the view or the
controller components, This clean interface allows us to expand our solution by
inserting additional view/controller pairs,

For example, Figure 18.14 shows an extension to the ball shooting program
given in Figure 18.2. It has an additional small view in the UT (user interface) area
next to the quit button. The small view is exactly the same as the original large
view, except that it covers a smaller area on the application window.

Figure 18.15 shows that, with our MVC solution design, we can implement
the small view by creating a new instance of ViewController (an additional Ap-
plicaitonView will be created by the ViewController) for the desired application
window area. Notice that the GenericController’s window area actually contains

T 3 1 N e B8 L RN i o - pa i

Original
Large View D “ﬂ.

Small View
window ared

Figure 18.14, The ball shooting program with large and small views.

430 18. Building Interactive Graphics Applications

C U AP MainEventLoop will ool tily furction to ninafize oure appdicaito

SystemInitinlization]) | Mew instance of
AppheationModel uModel = new ApplicationMacdel() ViewController (and
ViewController alargeViewController = new ViewControlles() ApplicationView)

GenericController - aGenerneController = new GenereComtrollen)

alargeViewController InimalizeControllerfaMoaodel, drawingAreaQfWindow)
aCienericControlier InftinlizeControl lefaModel, 1 AreaOmWindow)

ViesComtroller aSmallViewController = new ViewContraller()
aSmallViewController. InitializeContralleriaModel, smallVioeDrawingArea)

Figure 18.15. Implementing the small view for the ball shooting program.

the area of the small ViewController, When a user event is triggered in this area,
the “top-layer” controller (the visible one) will receive the event. Afier the initial-
ization, the new small view will behave in exactly the same manner as the original
large view.

For simplicity, Figure 18.14 shows two identical view/controller pairs. In gen-
eral, a new view/controller pair is created to present a different visualization of the
application state. For example, with slight modifications to the view component's
transformation functionality, the large view of Figure 18.14 can be configured
into a zeom view and the small view can be configured into a work view, where
the zoom view can zoom into different regions (e.g., around the HeroBall) and the
work view can present the entire application space (e.g., all the free falling balls).

Figure 18.16 shows the components of the solution in Figure 18.15 and how
these components interacl. We see that the model component supports the op-
erations of all the view and controller components and vet it does not have any
knowledge of these components. This distinct and simple interface has the fol-
lowing advantages:

1. Simplicity. The model component is the core of the application and usually
is the most complicated component. By keeping the design of this compo-
nent independent from any particular controller (user input/events) or view
(specific drawing area), we can avoid unnecessary complexity,

2. Portability. The controller component typically performs the franslation of
user actions to model-specific function calls. The implementation of this
translation is usually simple and specific to the underlying GUI APL Keep-
ing the model clean from the highly API-dependent controller facilitates
portability of a solution to other GUT platforms,

3. Expandability. The model component supports changing of its internal state
and understands how to draw its contents. As we have seen (Figures 18.15

18.3. The Modelview-Controller Architecture 431

GenericController

Evenis from CiLll

ApplicationMode;
AllWarkiBalls. HeraBall.
Defining™ewHarnBall

ApplicationView

Tranaloereation
infarmation Tor Lavge
View drawiby aFen

fraen
View drawing arca

MlgwContraller
Evemts fram Small
Fiew drawing anea

Tearafirmation
inlierestion e Smalf
Virw drawing s

L

Figure 18.16. Components of the ball shooting program with small view.

and 18.16), this means that it is straightforward to add new view/controller
pairs Lo increase the interactivity of the application.

18.3.4 Interaction Among The MVC Components

The MVC framework is a tool for describing general interactive systems, One
of the beauties of the framework is that it is straightforward to support multiple
view/controller pairs. Each view/controller pair shares responsibilities in exactly
the same way: the view presents the model and the controller allows the events
{user-generated or otherwise) to change the model component,

For an application with multiple view/controller pairs, like the one depicted
in Figure 18.16, we see that a user can change the model component via any of
the three controllers. In addition, the application itself is also capable of changing
the model state. All components must however, ensure that a coherent and up-
to-date presentation is maintained for the user. For example, when a user drags
out & new HeroBall, both the large and small view components must display the
dragging of the ball, while the GenericController component must ensure that the
slider bars properly echo the implicitly defined HeroBall velocity. In the classical

"MVC model, the coherency among different components is maintained with an
elaborate protocol (e.g., via the observer design pattern). Although the classical

432 18. Building Interactive Graphics Applications

MVC model works very well, the elaborate protocol reguires that all components
communicate or otherwise to keep rrack of changes in the model component.

In our case. and in the case of most modern interactive graphics systems,
the application defines the timer event for simulation computation. To support
smooth simulation results, we have seen that the timer evenl typically triggers
within real-time response thresholds (e.g.. 2050 milliseconds). When servicing
the timer events, our application can take the opportunity to maintain coherent
states among all components. For example, in the ServiceTimer{) function in
Figure 18.8, we update the velocity slider bars based on current HeroBall veloc-
ity. In effect, during each timer event service, the application pushes the up-to-
date model information to all components and forces the compenents to refresh
their presentation for the user. In this way, the communication protocol among
the componenis becomes trivial. All components keep a reference 1o the model,
and each view/controller pair in the application does not need to be aware of
the existence of other view/controller pairs. In between periodic timer events, the
user’s asynchronous events change the model. These changes are only made in the
model component, and no other components in the application need to be aware
of the changes. During the periodic timer service, besides computing the model’s
stmulation update, all components poll the model for up-to-date state information.
For example, when the user clicks and drags with the left mouse button pressed, a
new HeroBall will be defined in the model component. During this time, the large
and small view components will not display the new HeroBall, and the velocity
slider bars will not show the new HeroBall's velocity. These components will get
and display up-to-date HeroBall information only during the application timer
event servicing. Since the timer event is triggered more than 30 times per second,
the user will observe a smooth and up-to-date application state in all components
at all times.

18.3.5 Applying the MVC Concept

The MVC framework is applicable to general interactive systems. As we have
seen in this section, interactive systems with the MVC framework result in clearly
defined component behaviors, In addition, with clearly defined interfaces among
the components, it becomes straightforward to expand the system with additional
view/controller pairs.

An interactive system does not need to be an elaborate software application.
For example, the slider bar is a fully functional interactive system. The model
component contains a current value (typically a floating point number), the view
component presents this value to the user, and the controller allows the user to in-

18.4. Example Implementations 433

teractively change this value. A typical view component draws rectangular icons
{bar and knobs) representing the current value in the model component, while
the controller component typically supports mouse down and drag events 1o in-
teractively change the value in the model component. With this understanding,
it becomes straightforward to expand the system with additional view/controller
pairs. For example, in our ball shooting program, the slider bars have an addi-
tional view component where the numeric value of the model is displayved. In
this case, there is no complementary controller component defined for the nu-
meric view; an example complementary controller would allow the user to type
in numeric values.

18.4 Example Implementations

Figure 18.17 shows two implementations of the solution presented in Section
18.3.3. The version on the left is based on OpenGL and FLTK, while the ver-
sion to the right is based on D3D and MFC. In this section, we present the details
of these two implementations. The lessons we want to learn are that (a) a proper
MVC solution framework should be independent from any implementation and
b} a well designed implementation should be realizable based on and/or easily
ported to any suitable APL

Before examining the details of each implementation, we will develop some
understanding for working with modern GUI and graphics APls.

18.4.1 Working with GUI APls

Building the Graphical User Interface (GUI) of an application involves two dis-
tinct steps. The first step is to design the layvour of the user interface system. In this
step, an application developer places GUI elements (e.g., buttons, slider bars, etc.)

O O
0 O o

%?,000 o Rk O

Vi

D | S ity
-q-l__|_|T __:J - _....-: = ! — L ™ v

Figure 18.17. Ball shooting programs with OpenGL+FLTK and D3D+MFC.

434 18. Building Interactive Graphics Applications

in an area that represents the application window. The GUI elements are typically
two-dimensional graphical artifacts (e.g.. a 3D looking icon representing a slider
bar). The goal of this first step is to arrange these graphical artifacts to achieve
user friendliness and maximum usability (e.g., what is the best place/color/size
for the slider bar, etc.). The second step in building a GUI for an application
is to semantically link the GUI elements to the functionality of the application
{e.g., update HeroBall velocity when the slider bar is dragged). In this step, an
application developer builds the code for the necessary functionality (e.g., code
for changing HeroBall velocity) and regisrers this code with the on-screen graph-
ical artifacts {e.g.. the slider bar). This 15 precisely the event service registration
deseribed in Section 18.2.2.

Modern GUI APIs support the building of a graphical user interface with a
G U builder. A GUI builder is an interactive graphical editor that allows its user
to interactively place and manipulate the appearances of GUI elements. In ad-
dition, the GUI builder assists the application developer to compose or generate
service routines and links those service routines to the events generated by the
GUI elements.

Figure 18,18 illustrates the mechanism by which the GUI builder (in the mid-
die of the figure) links the graphical user interface front-end (left side of the the
figure) to the user-developed program code (right side of the figure), The pat-
terned ellipse, the GUT Builder, is shown in the middle of Figure 18.18 The arrow
pointing lefi towards the application (A Simple Program) indicates that the appli-
cation developer works with the GUI builder to design the Fayout of the applica-
tion (e.g., where to place the button or the stalus echo area). The arrows pointing
from the GUT builder toward the MainEventLoop and Event Service Linkage mod-

Fivistin fjom méine Exvert sezvivee handlpd
i hrhware devicel ilrpgily by overmiding
e i,
Ervamin G et A
i \
e e F r L] Ewend services bedled by exir
7 i Uraber the drsction 1 \ extorrad Bnkagr objoct
of e dervelopes, i \ i prmeraied by the OUE Huikler},

= Skl asivice otde

wpp it

Event
Service Aol
| Linkape
(7 GUI Buiider
: Application
Isreraci [LITE
o Daveloper

Figure 18.18. Working with a GUI AP,

18.4. Example Implementations 435

ules indicate that the GUI builder is capable of generating programming code to
register event services. In Figure 18,18, there are two dotted connections between
the mouse and the button GUIT element through the MainEventLoop module to the
event service linkage and the application controller modules. These two connec-
tions represent the two different mechanisms with which GUT APIs support event
SCrvices:

1. External Service Linkage. Some GUI builders generate extra program mod-
ules {e.g., in the form of source code files) with code fragments supplied
by the application developer to semantically link the GUI elements to the
application functionality. For example, when the “button”™ of “A Simple
Program™ is clicked, the GUI builder ensures that a function in the “Event
Service Linkage” module will be called. It is the application developer's
responsibility to insert code fragmenis into this function to implement the
required action.

2. Internal Direct Code Maodification. Some GUT builders insert linkage pro-
gramming code directly into the application source code. For example, the
GUI builder modifies the source code of the application’s controller class
and inserts a new function to be called when the “button™ of “A Simple
Program” is clicked. Notice that the GUI Builder only inserts an empty
function; the application developer is still responsible for filling in the de-
tails of this new function.

The advantage of an external service linkage mechanism is that the GUI builder
only has minimal knowledge of the application source code. This provides a sim-
ple and flexible development environment where the developer is free to organize
the source code structure, variable names, etc., in any appropriate way. However,
the externally generated programming module implies a loosely integrated envi-
ronment. For example, to modify the “button™ behavior of “A Simple Program,”
the application developer must invoke the GUI builder, modify code fragments,
and re-generate the external program module. The Internal Direct Code Modifi-
cation mechanism in contrast provides a better integrated environment where the
GUI builder modifies the application program source code directly. However, to
support proper “direct code modification,” the GUI builder must have intimate
knowledge of, and often places severe constraints on, the application source code
system (e.g., source code organization, file names, variable names, ete.).

18.4.2 Working with Graphics APls

Figure 18.19 illustrates that one way to understand a modern graphics API is by
considering the API as a functional interface to the underlying graphics hardware,

436 18. Building Interactive Graphics Applications

(A): Inmitialize
Ciraphics Hardware

A A
{(C1): I‘repm: .I'f \' r 1'
for drawing | Rendesing Siate |

o SORORO

| Rendering State |

U :m I*‘E] .

(B): Create Graphics
Context

Application

Figure 18.18. Working with a graphics AP

It is convenient to consider this functional interface as consisting of two stages:
Graphics Hardware Contexi (GHC) and Graphics Device Context (GDC),

Graphics Hardware Context (GHC), This stage is depicted as the vertical
ellipse on the right of Figure 18.19. We consider the GHC as a configuration
which wraps over the hardware video display card. An application creates a GHC
for each unique configuration (e.g.. depth of frame buffer or z-buffer, etc.) of
the hardware video card(s). Many Graphics Device Contexts {see below) can be
connected to each GHC to support drawing to multiple on-screen areas from the
same application,

Graphics Device Context (GDC). This stage 15 depicted as a cylindrical pipe
in Figure 18.19. The multiple pipes in the figure illustrates that an application
can create multiple GDCs to connect to the same GHC. Through each GDC, an
application can draw to distinct areas on the application window. To properly
support this functionality, each GDC represents a complete rendering state, A
rendering state encompasses all the information that affects the final appearance
of an image. This includes primitive attributes, illumination parameters, coordi-
nate transformations, etc. Examples of primitive attributes are color, size, pattern,
etc., while examples of illumination parameters include light position, light color,
surface material properties, etc. Graphics APls typically support coordinate trans-

|

18.4. Example Implementations 437

formation with a series of two or three matrix processors. In Figure 18.19, the
“M" boxes inside the GDC pipes are the matrix processors. Each matrix proces-
sor has a transformation matrix and transforms input vertices using this matrix.
Since these processors operate in series, together they are capable of implement-
ing multi-stage coordinate space transformations (e.g., object to waorld, world to
eye, and eye to projected space). The application must load these matrix proces-
sors with appropriate matrices 1o implement a desired transformation.

With this undersianding, Figure 18,19 illustrates that to work with a graphics
APL, an application will

(A} mitalize one or more GHCs. Each GHC represents a unigue configuration
of the graphics video card(s). In typical cases, one GHC is initialized and
configured to be shared by the entire application,

(B} create one or more GDCs. Each GDC supports drawing to distinct areas on
the application window. For example, an application might create a GDC
for each view component in an application.

(C) draw using a GDC. An application draws to a desired window area via
the corresponding GDC. Referring to Figure 18.19, an application sets the
rendering state (C1) and then issues drawing commands to the GDC (C2).
Setting of the rendering state involves setting of all relevant primitive and
illumination attributes and computing/loading appropriate transformation
maitrices into the matrix processors. A drawing command is typically a
series of vertex positions accompanied by instructions on how to interpret
the vertices (e.g., two vertex positions and an instruction that these are end
points of a line).

In practice. modern graphics APls are highly configurable and support many ab-
stract programming modes. For example, Microsoft's Direct3D supports a draw-
ing mode where the matrix processors can be by-passed entirely (e.g., when ver-
tices are pre-transformed).

18.4.3 Implementation Details

Figure 18.20 shows the design of our implementation for the solution presented
in Section 18.3.3.' Here, the MainUIWindow object represents the entire ball
shooting program. This object contains the GUI elements (slider bars, quit button,
etc.), the model (application state), and two instances of view/controller pairs (one
each for LargeView and SmallView).

'Source code for this section can be found at hitpffaculty, washington edwksung/feg 2mall tarzip

438 18. Building Interactive Graphics Applications

AU Elemamie
Shderfiar, FohoAmm, Chiiillufion

LargeYlew
Bervice Mouwe Livenis
Eraws Agplisation Snie TheMudel
Tierafall,
SmallView AllWorkdbiall. sic.
Horviee Mo Hvesty
Eirewes Agplication Siaid

Figure 18.20. Implemantation of the ball shooting program with two views,

OpenGL with FLTK

Figure 18.2] shows a screen shot of Fluid, FLTK's GUI builder, during the con-
struction of the GUI for the ball shooting program. In the lower-right corner of
Figure 18.21, we see that (A) Fluid allows an application developer to interac-
tively place graphical representations of GUI elements (3D-looking icons), (B}
15 an area representing the application window. In addition (C), the application
developer can interactively select each GUI element to define its physical appear-
ances (color, shape, size, etc.). In the lower-left corner of Figure 18.21, we see
that (D) the application developer has the option to type in program fragments
to service evenis generated by the corresponding GUI element. In this case, we
can see that the developer must type in the program fragment for handling the X
velocity slider bar events. Notice that this program fragment is separated from
the rest of the program source code system and is associated with Fluid (the GUI
builder). At the conclusion of the GUI layout design, Fluid generates new source
code files to be included with the rest of the application development environment.

= 5 |
L s =]

Figure 18.21, Fluld: FLTK's GUI Builder,

1

18.4. Example Implemeantations 439

& Forward deciaration of mouse pvent service pouiiees
vind ServiceMouse(int bution, it state, it x, 0t ¥); 4 service moyse button cfick

void ServiceActivebbozse(int x, int ¥ & service mouee dvag
cluss MuinUIWindow |
Userlnterface LI A Fiiv iv Limkage Code poreraiedd by Fliid (G0 Builder:
A T efifecs services svents gemeaiod by GUT elemenis
Modal *TheMuodel; & The appdicoation Stawe (Flgure 1)
FlGiut W indow *LargeView; & Phese are Few/Controller parry the weferstand graphics
FIGTutW indow *SmallView: & owimes AEDCT aod mosie evems feonrolleed
Mlain LI UW imdow| Model =m) | o T eomsteuciar
TheMuodel = m; ¥ Sern the model
LargeView = new FIGlutWindow(TheModel); A Creae Large Fiew
LargeView-=mouss = SeryvicebMosse: o enfinack flprotions for seevicr mose ewiii

LargeView-=motion = BerviceActiveMousce;
O Craeatie SmadlFiew o eracnly the samre ax Large Figw faof chow)
glutTimeFunc(/7 set up mer ard services | A Bt g rimer

Figure 18.22. MainUiWindow based on OpanGL and FLTE.

Since these source code files are controlled and generated by the GUI builder, the
application developer must invoke the GUI builder in order to update/maintain
the event service routines. In this way, FLTK implements external service linkage
as described in Section 18.4.1. In our implementation, we instruct Fludd 1o create
a Userfnterface class (.h and .cpp files) for the integration with the rest of our
application development environment.

Figure 18.22 shows the MainUIWindow implementation with OpenGL and
FLTK. In this case. graphics operations are performed through OpenGL and user
interface operations are supported by FLTK. As described, the Userlnterface ob-
ject in the MainUI'Window is created by Fluid for servicing GUI events. The-
Model is the application state as detailed in Figure 18.11. The two FIGlutWindow
objects are based on a predefined FLTK class designed specifically for support-
ing drawing with OpenGL. The constructor of MainUTWindow shows that the
mouse event services are registered via a callback mechanism. As discussed in
Section 18.2.4, the FLTK (Fast Light ToolKit) is an example of a light weight
GUI APL. Here, we see examples of using callback as a registration mechanism
for receiving user events.

FlGlutWindow is a FLTK pre-defined FI_Glut_Window class object (see Fig-
ure |8.23) designed specifically to support drawing with OpenGL, Each instance
of a FIGlutWindow object is a combination of a controller (e.z., to receive mouse
events) and a Graphics Device Context (GDC). We see that the druw() function
first sets the rendering state (e.g., clear color and matrix values), including com-
puting and programming the mairix processor (e.g., GL_PROJECTION), before
calling TheModel to re-draw the application state,

440 18. Building Interactive Graphics Applications

AED Gt Wicdosy i o pare victied elass sapplled be FLTK specifically for supporting

A swidviws wish Opentel arigd amd f receiving mouse evons,

class FiGhtWindow : public FI_Glat_Windaow |
FIGIutW indoow(Model *mij; I Covstriactar
Model *TheModsl; A The application siave:-inidalized dering constraction sinte,
flons WorldWidth, WarldHeight, Worldd Space Dimession

void Hardware ToWordPosnt{ing lwX, int hw, foat &wekX, foat &we)
& Trawstorm mewse oficks (hw X, fiv Y ro World Coaridaare fae X, well

virtwal void drawi) | A wartwedd fienction from B Gt Windew for deaniting
gIClearCotor] (LB 0.8F, U950 DO
gl lean{GL_COLOE_BUFFER_BITY, & Clegwing the hackgrowed color
gitdatrixMuode{GL_PROJECTION): A Presgiamtniing the OperrGL e G PROVECTION
eIl oadldentity b o Matrix Processor to the progoer transfronn
glurtho2D(00F, WarldWidth, (L0F, WorldHeight,
TheModel->DrawApplicailonSiatey); & Drawing of the spplicanion siate
|

Figure 18.23. FIGlutWindow: OpenGLFLTEK view/controller palr,

Direct3D with MFC

Figure 18.24 shows g screen shot of the MFC resource editor, MFC's GUT builder,
during the construction of the ball shooting program. Similar to Fluid (Fig-
ure 18.21), in the middle of Figure 1824, (A) we see that the resource editor
also supports interactive designing of the GUI element layout in (B), an area rep-
resenting the application window. Although the GUI builder interfaces operate
differently, we observe that in (C), the MFC resource editor also supports the
definition/modification of the physical appearance of GUT elements. However,

e e peme R A PSS New Ea= e
l-.ll-—.L'!I'le-h-l . . — : IE'T]FEH%
- S m————— ——— "
(C: Applicatian Developer fecn
3 - define their appearances. e 2
(B Ares representing =
the application window i L
(AR terucively =
placed GUI clements =
= J_—:——— F:‘._-[—: (Dy: Event service
N ——— . saurce code system.
H ﬁ.!-__ = o

Figure 18.24. The MFC resource editor.

18.4. Example Implementations 44

class MainUIl'Window - public CDialog |

Madel *TheModel; Tive application Seeee (Filgee 1)
LPDIRECTIDS TheGHC; £ Thix i the Crapiics Hardware Confet
CWnd 30 *LarpeView; ' These are Flew/Controller pairs that snderctond dreawing
CWandDAD mSmallView: & with DA (GINC) aad UV elemient everns foonrallen)
C8liderCerd MSlider, YSlider; Y Thiese arv the DU elemomnty
CRringEche StatusEcho;

vl OnTimer(§; A Ehwgrrile tive Tiover service fumction

void OnHSecroll{ _..k werritle the Scroll bar seevice functlon

i

Figure 16.25. MainUiWindow basad on Microsoft Direct3D and MFC.

unlike Fluid, the MFC resource editor is tightly integrated with the rest of the
development environment. In this case, a developer can register for event ser-
vices by inheriting or overriding appropriate service routines. The MFC resource
editor automatically inserts code fragments into the application source code sys-
tem. To suppori this functionality, the application source code organization is
governed/shared with the GUI builder; the application developer is not entirely
free to rename files/classes and/or to re-organize implementation source code file
system structure, MFC implements internal direct code modification for event
service linkage, as described in Section 18.4.1.

Figure 18.25 shows the MainUIWindow implementation with Direct3D and
MEFC, In this implementation, graphics operations are performed through Di-
rect3D while user interface operations are supported by MFC, Once again, The-
Model is the application state as detailed in Figure 18.11. LPDIRECTID9 is
the Graphics Hardware Context (GHC) interface object. This object is created
and initialized in the MainUI'Window constructor (not shown here). The two
CWndD3D objects are defined to support drawing with Direct3D. We notice that
one mujor difference between Figure 18.25 and Figure 18.22 is in the GUI ele-
ment support, In Figure 18.25, we see that the GUI element objects (e.g., XSlider)
and the corresponding service routines (e.g., OnHScroll()) are integrated into the
MainUTWindow object. This is in contrast to the solation shown in Figure 18,22
where GUI elements are grouped into a separate object (e.g., the Userlnterface
object) with callback event service registrations. As discussed in Section 18.2.4,
MEFC is an example of a large commercial GUI AP, where many event services
are registered based on object-oriented function overrides (e.g., the OnHScroll{)
and OnTimer(} functions),

CWndD3D is a sub-class of the MFC CWnd class (see Figure 18.26). CWnd
1s the base class designed for a generic MFC window, By sub-classing from this
base class, CWndD3D can support all default window-related events (e.g., mouse

442 18. Building Interactive Graphics Applications

S W by the MIPC Beese cfass for afl window effecs, Heve we subelas fo créate o D30 o
A winglaw b ocluding o D30 Graphics Device Confext
chass CWnd D3 public CWad |

LPIMRECTIDDEVICE® DIDDevice: O Thiv by the O30 Grapeliics. Deviie Conear (G10C)

Madel *TheMadel; & The appdicarion state
verd [nit DA LPEIRECTI DAY, U Crrate DIO0evice (GO fo conmect fn GIIC
vobd RedrawView() | V D v Appdiceation S

Y Compure wortd coardinane b device trsform
DEDMATRIX trnsform = Compute Transiormtion|
DADDevice->SetTransform| DADTS_WORLD, &rtanaform);
O Pregprememiege Wb 230 WERED sunrix winly the compuiod travsiorm imalrix

' DI Device->Clear) beColor, D3IDCLEAR. TARGET),
DADDevice-=BeginScene)
TheMaodel-=Draw ApplicationSiatel I D evice);
D3DDevice-=EmdScene();
D3DDevice->Present!),
1

void Hardware To'WonddPomi CPolm lowPr, flont &welX, Mear &weY),;
4 Tramsform arense oficks (hw P o wordd coordinate fweX, wel?

vold OnlBumonDownd CPoim haw Pty 0 Chvervice monse borondderg serviee fismerions

b

Figure 18.26. CWndD3D: DirectaD/MFC view/controller pair,

events). The LPDIRECTIDDEVICEY object is the D3D Graphics Device Con-
text (GDC) interface object. The MmitD30{) function creates and imitializes the
GDC object and connects this object 1o the LPDIRECT3DY (GHC). In this way,
a CWndD3D sub-class is a basic view/controller pair; it supports the view func-
tionality with drawing via the D3D GDC and controller functionality with input
via MFEC. The RedrawView() function is similar 1o the draw() function of Fig-
ure 18.23 where we first set up the rendering state (e.g., bgColor and matrix),
including programming the matrix processor (e.g., D3DTS_WORLD), before call-
ing the model to draw itself.

In conclusion, we see that Figure 18.20) represents an implementation of the
solution presented in Section 18.3.3 while Section 18.4.3 presented two versions
of the implementation for Figure 18.20. Although the GUI Builder, event service
registration, and actual API function calls are very different, the final program-
ming source code structures are remarkably similar. In fact, the two versions
share the exact same source code files for the Model class. In addition, although
the drawing functions for CirclePrimitive are different for OpenGL and D3D, we
were able to share the source code files for the rest of the primitive behaviors (e.g.,
set centerfradius, travel with velocity, collide, etc.). We reaffirm our assertion that
software framework. solution structures, and event implementations should be
designed independent of any APIs.

18.5. Applying Our Results 443

18.5 Applying Our Results

We have seen that the event-driven programming model is well suited for design-
ing and implementing programs that interact with users. In addition, we have seen
that the modelview-controller framework is a convenient and powerful structure
for organizing functional modules in an interactive graphics application. In devel-
oping a solution to the ball shooting program. we have demonstrated that knowl-
edge from event-driven programming helps us design the controller component
(e.g.. handling of mouse events, etc.), computer graphics knowledge helps us de-
sign the view component (e.g.. transformation and drawing of circles, ete), while
the model component is highly dependent upon the specific application (e.g., free
falling and colliding circles). Our discussion so far has been based on a very sim-
ple example. We will now explore the applicability of the MVC framework and
its implementation in real-world applications.

18.5.1 Example 1: PowerPoint

Figure 18.27 shows how we can apply our knowledge in analyzing and gaining
insights into Microsoft PowerPoint,” a popular interactive graphics application. A
screen shot of a slide creation session using the PowerPoint application is shown
at the left of Figure 18.27. The right side of Figure 18.27 shows how we can
apply the implementation framework 1o gain insights into the PowerPoint appli-
cation. The MainUI'Window at the right of Figure 18.27 is the GUI window of

(o

Figure 18.27. Understanding PowerPaoint using the MVC implamentation frameawork.

*Powerpoint is a registered trademark of Microsoft,

444 18. Building Interactive Graphics Applications

the entire application, and it contains the GUI elements that affect/echo the entire
application state (e.g., main menu, status area, elc.). We can consider the MainlUI-
Window as the module that contains TheModel component and includes the four
view/controller pairs.

Recall that TheMuode! is the state of the application and that this component
contains all the data that the user interactively creates, In the case of PowerPoint,
the user creates a collection of presentation slides, and thus TheModel contains all
the information about these slides (e.g. layout design style, content of the slides,
notes associated with each slide, etc.), With this understanding of TheModel com-
ponent, the rest of the application can be considered as a convenient ool for pre-
senting TheModel (the view) to the user and changing TheModel (the controller)
by the user, In this way. these convenient lols are precisely the view/controller
pairs {e.g., ViewController components from Figure 18.16),

In Figure 18.27, each of the four view/controller pairs (i.e., OverviewPane,
WorkPane, StylePane, and NotesPane) presents, and supports changing of differ-
ent aspects of TheModel component:

¢ OverviewPane. The view component displays multiple consecutive slides
from all the slides that the user has created; the controller component sup-
ports user scrolling through all these slides and selecting one for editing,

¢ WorkPane. The view component displays the details of the slide that is cur-
rently being edited; the controller supports selecting and editing the content
of this slide.

e SiylePane. The view component displays the layout design of the slide
that is currently being edited; the controller supports selecting and defining
a new lavout design for this slide.

o NotesPane. The view component displays the notes that the user has cre-
ated for the slide that is currently being edited; the controller supports edit-
ing of this notes.

As is the case with most modern interactive applications, PowerPoint defines an
application timer event to support user-defined animations (e.g., animated se-
quences between slide transitions). The coherency of the four view/controller
pairs can be maintained during the servicing of this application timer event. For
example, the user works with the StylePane to change the layout of the current
slide in TheMuodel component, In the meantime, before servicing the next timer
event, OverviewPane and WorkPane are not aware of the changes and display an
out-of-date design for the current slide. During the servicing of the timer event,

18.5. Applying Our Results 445

NP R
L
GraphPang g
sl St A, #1L
Salert tject o wark us

CameraPare

i CumsEnn wosking veess
ST I i
D
MaterisiPane = Krimatisn alinvatien

l R Ear

Seleirse matssali
— e S

DutlinePane

[y n—
k’-«-mmm _/
e

Figure 18.28, Understanding Maya with the MVC implamentation framework.

the MainUl'Window forces all view/controller pairs to poll TheModel and refresh
their contents. As discussed in Section 18.3.4, since the timer events are Lypically
trggered more than 30 times in a second, the user is not be able 1o detect the brief
out-of-date display and observes a consistent display at all times. In this way, the
four view/controller pairs only need to keep a reference to TheModel component
and do not need to have any knowledge of each other. Thus, it is straightforward
1o insert and delete view/controller pairs into/from the application.

18.5.2 Example 2: Maya

We now apply our knowledge in analyzing and understanding Maya®, an inter-
active 30 modeling/fanimation/rendering system. The left side of Figure 18.28
shows a screen shot of Maya in a simple 3D content creation session. As in the
case of Figure 18.27, the right side of Figure 18.28 shows how we can apply
the implementation framework to gain insights into the Maya application. Once
again we see that the MainUI'Window is the GUI window of the entire application
containing GUI elements that affect/echo the entire application state, TheModel
compenent, and all the view/controller pairs.

Since Maya is a 3D media creation system, TheModel component contains 3D
content information {e.g. scene graph, 3D geometry, material properties, lighting,
cameri, animation, eic.). Once again, the rest of the components in the MainlUl-
Window are designed to facilitate the user’s view and o change TheModel, Here
is the functionality of the four view/controller pairs:

IMaya is o registered trademark of Alias,

446 18. Building Interactive Graphics Applications

o GraphPane. The view component displays the scene graph of the 3D con-
tent; the controller component supporis navigating the graph and selecting
scene nodes in the graph.

» CameraPane. The view component renders the scene graph from a cam-
era viewing position; the controller component supports manipulating the
camera view and selecting objects in the scene.

s MaterialPane. The view component displays all the defined materials; the
controller component supports selecting and editing materials.

s QutlinePane. The view component displays all the transform nodes in the
scene; the controller component supports manipulating the transtforms (e.g.
create/change parent-child relationships, etc.),

Onee again, the coherency among the different view/controller pairs can be main-
tained while servicing the application timer events.

We do not speculate that PowerPoint or Maya is implemented according o
our framework, These are highly sophisticated commercial applications and the
underlying implementation is certainly much more complex. However, based on
the knowledge we have gained from this chapter, we can begin to understand how
to approach discussing, designing, and building such interactive graphics appli-
cations. Remember that the important lesson we want to learn from this chapter
is how to organize the functionality of an interactive graphics application into
components and understand how the components interact so that we can better
understand, maintain, modify, and expand an interactive graphics application,

18.6 Notes

| first learned about the model view controller framework and event-driven pro-
gramming from SmallTalk (Goldberg & Robson, 1989) (You may also want to
refer to the SmallTalk web site (http:/www.smalltalk.org/main/).) Both Design
Patterns—Elements of Rewsable Objeci-Oriented Design (Gamma, Helm, John-
son, & Vissides, 1995) and Parrern-Oriented Software Architecture (Buschmann,
Meunier, Rohnert, Sommerlad, & Stal, 1996) are excellent sources for finding out
more about design patterns and software architecture frameworks in general. |
recommend 20D Game Engine Architecture (Eberly, 2004) as a good source for
discussions on issues relating to implementing real-time graphics systems. |
learned MFC and Direct3D mainly by referring to the online Microsoft Devel-
oper Network pages (http//msdn.microsoft.com). In addition, I find Prosise’s

18.7. Exercises 447

book Programming Windows with MFC (Prosise, 1999) to be very helpful. 1 refer
to the OpenGL Programming Guide (Shreiner et al., 2004, Reference Manual
{Shreiner, 2004), and FLTK on-line help (hitp:ffwww.fltk.org/) when developing
my OpenGL/FLTK programs.

18.7 Exercises

1. Here is the specification for dragging out a line:

o Left mouse button (LMB) clicks define the center of the line.

e LMB drags out a line such that the line extends in two directions, The
first direction extends from the center (LMB click) position toward the
current mouse position. The second direction extends in the opposite
direction from the first with exactly the same length.

e Right mouse button (RMB) click-drag moves the line such that the
center of the line follows the current mouse position.

(a) Follow the steps outlined in Section 18.2.3 and design an event-driven
programming solution for this specification.

b

{c} Implement your design with MFC and Direct-30,

Implement your design with FLTK and OpenGL.

o

Motice that in this case the useful application internal state information (the
center position of the line} and the drawing presentation requirements {end
points of the line) do not coincide exactly. When defining the application
state, we should pay attention to what is the most important and convenient
information to store in order to support the specified functionality,

2. For the line defined in Exercise 1, define a velocity that is the same as
the slope of the line: once created, the line will travel along the direction
defined by its slope. Use the length of the line as the speed. (Note that
longer lines trave] faster than shorter lines).

3. Here is the specification for dragging out a rectangle:

s LMB click defines the center of the rectangle.

o LMB drag cut a rectangle such that the rectangle extends from the
center position and one of the corner positions of the rectangle always
tollows the current mouse position.

448 18. Building Interactive Graphics Applications

RMB click-drag moves the rectangle such that the center of the rect-
angle follows the current mouse position.

(@) Follow the steps outlined in Section 18.2.3 and design an event-driven
programming solution for this specification.

(b} Implement your design with FLTK and OpenGL.

(e} Implement your design with MFC and Direct-3D.

4. For the rectangle in Exercise 3:

{a) Support the definition of a velocity similar to that of HeroBall velocity
in Section 18.1; once created, the rectangle will travel along a direc-
tion that is the vector defined from its center towards the LMB release
position.

(b) Design and implement collision between two rectangles (this is a sim-
ple 2D bound intersection check),

5. With results from Exercise 4, we can approximate a simple Pong game:

e The paddles are rectangles;

s A pong-ball is drawn as a cirele but we will use the bounding square (a
square that centers at the center of the circle, with dimension defined
by the diameter of the circle) to approximate collision with the paddle.

Design and implement a single-player pong-game where a ball (circle)
drops under gravitational force and the user must manipulate o paddle 1o
bounce the ball upward to prevent it from dropping below the application
window. You should:

{a) design a specification (similar to that of Section 15.1) for this pong
game;

{b) follow the steps outlined in Section 18.2.3 to design an event-driven
programming solution;

ic) implement your design either with OpenGL or Direct-3D.

6. Extend the ApplicationView in Figure 18.12 to include functionality for
setting a world coordinate window bound. The world coordinate window
bound defines a rectangular region in the world for displaying in the View-
port. Define a method for setting the world coordinate window bound and
modify the ApplicaitonView::DeviceToWorldXform() function to support
transforming mouse clicks to world coordinate space.

18.7. Exercises 445

7. Integrate your results from Exercise 6 into the two-view ball shooting pro-
gram from Figure 18.14 such that the small view can be focused around the
current HeroBall, When there is no current HeroBall, the small view should
display nothing. When user LMB click-drags, or when user RMB selects a
HeroBall, the small view’s world coordinate window bound should center
at the HeroBall center and include a region that 1s 1.5 times the HeroBall
diameter.

19

Light

In this chapter, we discuss the practical issues of measuring light, vsually called
radiometry, The terms that arise in radiometry may at first seem strange and have
terminology and notation that may be hard to keep straight. However, because
radiometry is so fundamental to computer graphics, it is worth studying radiome-
try until it sinks in. This chapter also covers photometry, which takes radiometric
quantities and scales them to estimate how much “useful™ light is present. For
example, a green light may seem twice as bright as a blue light of the same power
because the eye is more sensitive to green light. Photometry attempis to quantify
such distinctions.

19.1 Radiometry

Although we can define radiometric units in many systems, we use 5/ (Interna-
tional System of Units) units. Familiar S1 units include the metric units of merer
(i) and gram (g). Light is fundamentally a propagating form of energy, so it is
useful to define the SI unit of energy. which is the foule (J).

19.1.1 Photons

To aid our intuition, we will describe radiometry in terms of collections of large
numbers of phorons, and this section establishes what is meant by a photon in this

451

452 19. Light

context. For the purposes of this chapter. a photon is a quantum of light that has
a position, direction of propagation, and a wavelength A. Somewhal strangely,
the 51 unit used for wavelength is manometer (nm), This is mainly for historical
reasons, and 1 nm = 107" m. Another unit, the angstrom, is sometimes used, and
one panometer is ten angsiroms. A photon also has a speed ¢ that depends only
on the refractive index n of the medium through which it propagates. Sometimes
the frequency f = o/ A is also used for light. This is convenient because unlike
Aand ¢, f does not change when the photon refracts into a medium with a new
refractive index. Another invariant measure is the amount of energy 4 carried by
a photon, which is given by the following relationship:

he

=fF e 19,
g="ht I (181
where i = 6.63 = 107%" Is is Plank’s Constant. Although these quantities can

be measured in any unit system, we will use 51 units whenever possible.

19.1.2 Spectral Energy

It we have a large collection of photons, their wotal energy ¢) can be computed
by summing the energy ; of each photon. A reasonable question 1o ask is "How
is the energy distributed across wavelengths? An easy way to answer this is o
partition the photons into bins, essentially histogramming them. We then have
an energy associated with an interval, For example, we can count all the energy
between A = 500 nm and A = 600 nm and have it turm out to be 1002 1, and this
might be denoted ¢[500, 600] = 10.2. If we divided the wavelength interval into
two 50 nm intervals, we might find that g[500, 550] = 5.2 and ¢|550, 600] = 5.0.
This tells us there was a little more energy in the short wavelength half of the
interval [300, 600)]. If we divide into 25 nm bins, we might find (500, 525] = 2.5,
and 50 on. The nice thing about the system is that it is siraightforward. The bad
thing about it 1s that the choice of the interval size determines the number.

A more commonly used system is (o divide the energy by the size of the
interval. So instead of g[300, 600] = 10.2 we would have

10.2 =
Q[500.600] = ~-= = 0.12 J(nm) Y

This approach is nice, because the size of the interval has much less impact on
the overall size of the numbers, An immediate idea would be to drive the interval
size AA to zero. This could be awkward, because for a sufficiently small AX, ¢y
will either be zero or huge depending on whether there is a single photon or no

19.1. Radiometry 453

photon in the interval. There are two schools of thought to solve that dilemma.
The first is to assume that A is small, but not o small that the gquantum nature of
light comes into play, The second 15 to assume that the light is a continoum rather
than individual photons, so a true denvative d€) /A is appropriate. Both ways of
thinking about it are appropriate and lead 1o the same computational machinery.
In practice, it seems that most people who measure light prefer small, but finite,
intervals, because that is what they can measure in the lab, Most people who
do theory or computation prefer infinitesimal intervals, because that makes the
machinery of calculus available,

The quantity €2, is called spectral energy, and it is an fntensive quantity as op-
posed to an extensive quantity such as energy, length, or mass. Intensive quantities
can be thought of as density functions that tell the density of an extensive quantity
al an infinitesimal point. For example, the energy () at a specific wavelength is
probably zero, but the spectral energy (energy density) (2 is a meaningful quan-
uty. A probably more familiar example is that the population of a country may
be 25 million, but the population at a point in that country is meaningless. How-
ever, the population densiry measured in people per square meter is meaningful,
provided it is measured over large enough areas. Much like with photons, popula-
tion density works best if we pretend that we can view population as a continuum
where population density never becomes granular even when the area is small.

We will follow the convention of graphics where spectral energy is almost al-
ways used, and energy is rarely used, This results in a proliferation of A subscripts
if “proper” notation is used: Instead, we will drop the subscript and vse ¢ 1o de-
note spectral energy. This can result in some confusion when people outside of
graphics read graphics papers, so be aware of this standards issue. Your intuition
about spectral power might be aided by imagining a measurement device with an
energy sensor that measures light energy . If you place a colored filter in front of
the sensor that allows only light in the interval (A — AM/2. X+ AL /2], then the
spectral power at A is (= Ag /AN

19.1.3 Power

It is useful to estimate a rate of energy production for light sources. This rate is
called power, and it is measured in warts, W, which is another name for joules
per secand. This is easiest to understand in a sready srare, bul because power is
an intensive quantity {a density over time), it is well defined even when energy
production is varying over time. The units of power may be more familiar, e.g.. a
100-watt light bulb. Such bulbs draw approximately 100] of energy each second,
The power of the light produced will actually be less than 100 W because of

454 19. Light

heat loss, etc.. but we can still use this example 1o help undersiand more about
photons. For example, we can get a feel for how many photons are produced in a
second by a 1000 W light. Suppose the average photon produced has the energy of
a A = 500 nm photon. The frequency of such a photon is

e 3 % 10% ms—! 141 [
f=1=m=ﬁxlu -

The energy of that photon is hf = 4 x 107" J. That means a staggering 10*"
photons are produced each second, even if the bulb is not very efficient. This
explains why simulating a camera with a fast shutter speed and directly simulated
photons is an inefficient choice for producing images.

Az with energy, we are really interested in spectral power measured in
W nm}_l. Again, although the formal standard symbol for spectral power is h
Py, we will use @ with no subscript for convenience and consistency with most
of the graphics literature. One thing 1o note is that the spectral power for a light
source 15 usually a smaller number than the power. For example. if a light emits
a power of 100 W evenly distributed over wavelengths 400 nm to 800 nm. then
the spectral power will be 100 W/400 nm = 0.25 Wi{nm) . This is something 1o
keep in mind if you set the spectral power of light sources by hand for debugging
purposes,

The measurement device for spectral energy in the last section could be mod-
ified by taking a reading with a shutter that is open for a ime interval Af centered
at ime £. The spectral power would then be AQ /([ATAN).

19.1.4 Irradiance

The quantity irradiance arises naturally if vou ask the guestion “How much light
hits this point?”, Of course the answer 15 “none.” and again we must use a density
function. If the point is on a surface, it is natural 1o use area to define our density
function. We modify the device from the last section to have a finite A4 area
sensor that is smaller than the light field being measured. The spectral irradiance
H is just the power per unit area A® /A A. Fully expanded this is

Ag

Thus, the full units of irradiance are Jm =2 (nm) !, Note that the SI units for
radiance include inverse-meter-squared for area and inverse-nanometer for wave-
length. This seeming inconsistency (using both nanometer and meter) arises be-
cause of the natural units for area and visible light wavelengths.

19.1. Radiometry 455

When the light is leaving a surface, e.g.. when it is reflected, the same quantity
as irradiance is called radiant exitance, £, It is useful to have different words
for incident and exitant light, because the same point has potentially different
irradiance and radiant exitance,

19.1.5 Radiance

Although irradiance tells us how much light is arriving at a point, it tells us little
about the direction that light comes from. To measure something analogous to
what we see with our eyes, we need to be able to associate “how much light” with
a specific direction. We can imagine a simple device to measure such a quantity
(Figure 19.1). We use a small irradiance meter and add a conical “baffler” which
limits light hitting the counter to a range of angles with solid angle Ae, The
response of the detector is as follows:

_AH
response — Ao

_ Ag
T AAAF AFAN

This is the spectral radiance of light travelling in space. Again, we will drop the
“spectral” in our discussion and assume that it is implicit,

kil

Figure 18.2. The signal a radiance detector receives does not depend on the distance to
the surface baeing measurad. This figure assumas the detactors are poelnting at areas on tha
surface that are emitting light in the same way.

Figure 19.1.

By adding
a blinder thal shows only
a small solid angle Ao to
the irradiance detector, we
measure radiance.

Adfeosa

Figure 18.3. Tha ir-
radignce at the surface as
masked by the cone Is
smaller than that measured
at the detector by a cosing
factor.

Figure 19.4, The direction
k has a differential solid an-
qle de associated with it

458 19. Light

Radiance is what we are usually computing in graphics programs, A won-
derful property of radiance is that it does not vary along a line in space. To see
why this is true, examine the two radiance detectors both looking at a surface
as shown in Figure 192, Assume the lines the detectors are looking along are
close enough together that the surface is emitting/reflecting light “the same™ in
both of the areas being measured. Because the area of the surface being sampled
is proportional to sguared distance, and becanse the light reaching the detector is
inversely proportional to squared distance, the two detectors should have the same
reading.

It is useful to measure the radiance hitting a surface, We can think of placing
the cone baffler from the radiance detector at a point on the surface and measur-
ing the irradiance H on the surface originating from directions within the cone
(Figure 19.3), Note that the surface “detector” is not aligned with the cone, For
this reason we need to add a cosine correction term to our definition of radiance:

AH
Ageosl

L) Ag

~ Adeosf Ao At AN

As with irradiance and radiont exitance, it is usetul to distinguish between radi-
ance incident at a point on a surface and exitant from that point. Terms for these
concepts sometimes used in the graphics hiterature are surface radianee L, for
the radiance of (leaving) a surface; and field radiance Ly for the radiance incident
at o surface. Both require the cosine term, because they both correspond to the
configuration in Figure 19.3:

response =

AFE
By Ao cosfl

AH
L= ﬂmf‘.mi!i'

Radiance and Other Radiometric Quantities

If we have a surface whose field radiance is Ly, then we can derive all of the
other radiometric quantities from it. This is one reason radiance is considered the
“fundamental” radiometric quantity. For example, the irradiance can be expressed
s

H= [Ljk) cosf do.
all k

This formula has several notational conventions that are common in graphics
that make such formulae opaque to readers not familiar with them (Figure 19.4),
First, k 1s an incident direction and can be thought of as a unit vector, a direction,

19.1. Radiometry 457

or a (8, ¢) pair in spherical coordinates with respect to the surface normal. The
direction has a differential solid angle do associated with it The field radiance 15
potentially different for every direction, so we write it as a function L(k).

As an example, we can compute the irradiance H at a surface that has con-
stant field radiance L ¢ in all directions. To integrate, we use a classic sphernical
coordinate system and recall that the differential solid angle is -

der = sin # df deb,

s0 the irradiance is

v 8
H= [f Ly cosfsind dff di
Se=0 Jo=0

= Z-TL_r,

This relation shows us our first occurrence of 4 polentially surprising constant .
These factors of 7 occur frequently in radiometry and are an artifact of how we
chose o measure solid angles, i.e.. the area of a unit sphere is a multiple of =
rather than a multiple of one.

Similarly, we can find the power hitting a surface by integrating the irradiance
across the surface area:

¢ = f Hix)dA,
all x

where x is a point on the surface, and o4 is the differential area associated with
that point. Note that we don’t have special terms or symbols for incoming ver-
sus outgoing power. That distinction does not seem to come up enough to have
encouraged the distinction.

19.1.6 BRDF

Because we are interested in surface appearance, we would like to characterize
how a surface reflects light. At an intuitive level, for any incident light coming
from direction k;,, there is some fraction scattered in a small solid angle near the
putgoing direction k,,. There are many ways we could formalize such a concept,
and not surprisingly, the standard way to do so is inspired by building a simple
measurement device. Such a device is shown in Figure 19.5, where a small light
source is positioned in direction k; as seen from a point on a surface. and a detec-
tor is placed in direction k. For every directional pair (k;, k.], we take a reading
with the detector.

MNow we just have to decide how to measure the strength of the light source
and make our reflection function independent of this strength. For example. if we

458 19. Light

fm

light "

,z—/ = __‘_:v/

Figure 18.5. A simple measurement device for directional refisctance. The positions of light
and detector ara moved to each possible pair of directions. Note that both & and k, point
away from the surface to allow reciprocity.

replaced the light with a brighter light, we would not want to think of the surface
as reflecting light differently. We could place a radiance meter at the point being
illuminated to measure the light. However, for this o get an accurate reading that
would not depend on the Aeg of the detector, we would need the light to subtend a
solid angle bigger than Ag. Unfortunately, the measurement taken by our roving
radiance detector in direction k, will also count light that comes from points
outside the new detector’s cone. So this does not seem like a practical solution.
Alternatively, we can place an irradiance meter at the point on the surface be-
ing measured. This will take a reading that does not depend strongly on subtleties
of the light source geometry. This suggests characterizing reflectance as a ratio:

2> g
where this fraction p will vary with incident and exitant directions k,; and k,, H
is the irradiance for light position k,, and L, is the surface radiance measured in
direction k. If we take such a measurement for all direction pairs, we end up
with a 4D function p(k;, k). This function is called the bidirectional refleciance
distribution function (BRDF). The BRDF is all we need to know to characterize
the directional properties of how a surface reflects light.

Directional Hemispherical Reflectance

Given a BRDF it is straightforward to ask “What fraction of incident light is
reflected?” However, the answer is not 50 easy, the fraction reflected depends on
the directional distribution of incoming light. For this reason, we typically only

19.1. Radiometry 459

set a fraction reflected for a fixed incident direction k;. This fraction is called the
directional hemispherical reflectance. This fraction, Rk,) is defined by

_ power in all outgoing directions k,
~ power in a beam from direction k;

Fi(k;)

MNote that this quantity is between zero and one for reasons of energy conservation,
If we allow the incident power @, to hit on a small area A A, then the irradiance
is ®; /AA. Also, the ratio of the incoming power is just the ratio of the radiance
exitance to irradiance: -

Rik) = T
The radiance in a particular direction resulting from this power is by the definition

of BRDF:
L(k,) = Hp(ki, ko)

_ %
— A4
And from the definition of radiance, we also have
AFE
L k|:| e T
(ko) Ao, cosd,

where E is the radiant exitance of the small patch in direction k. Using these
two definitions for radiance we get

AR

Hplki ko) = R costy
L a

Rearranging terms, we get

AFE
? = ﬂ[ku k::}aﬂ;.l’.‘ﬁﬁg”.

This 15 just the small contribution to £/ H that is reflected near the particular k.
To find the total A(k;), we sum over all outgoing k. In integral form this is

Rk} = [M plk;. k,) cos 8, do,.

Ideal Diffuse BRDF

An idealized diffuse surface is called Lambertian. Such surfaces are impossible
in nature for thermodynamic reasons, but mathematically they do conserve en-
ergy. The Lambertian BRDF has p equal to a constant for all angles. This means

480 19. Light

the surface will have the same radiance for all viewing angles, and this radiance
will be proportional to the iradiance.
If we compute (k) for a a Lambertian surface with p = C we get

k) = f Ceosd, do,
all ks
2m w2
= f f kcosl,sin 8, df, da,
=0 4 8,=0
= w.

Thus, for a perfectly reflecting Lambertian surface (R = 1), we have p = 1/7,
and for a Lambertian surface where IT(k,) = r, we have

pllei ko) =~

This is another example where the use of a steradian for the solid angle determines
the normalizing constant and thus introduces factors of .

19.2 Transport Equation

With the definition of BRDF, we can describe the radiance of a surface in terms of
the incoming radiance from all different directions. Because in computer graphics
we can use idealized mathematics that might be impractical to instantiate in the
lab, we can also write the BRDF in terms of radiance only. If we take a small part
of the light with solid angle Ae; with radiance L; and “measure” the reflected
radiance in direction k, due to this small piece of the light, we can compute
a BRDF (Figure 19.6). The irradiance due to the small piece of light is H =

Flgure 19.6. The geomaetry for the transport equation in its directional form,

18.2. Transport Equation 461

L cos 8.0, Thus the BRDF 15
[Lu
e L cos i Aey’
This form can be useful in some situations. Rearranging terms, we can write down
the part of the radiance that is due to light coming from direction k;:

AL, = plh;, k) Ly cos 8. A0,

If there is light coming from many directions L;(k;), we can sum all of them. In
integral form, with notation for surface and field radiance, this is

Lok, = fnk plki ko) Lk) cos tyda;.

This is often called the rendering equation in computer graphics (Immel, Cohen,
& Greenberg, 1986),

Sometimes it is useful to write the transport equation in terms of surface radi-
ances only (Kajiya, 1986). Note, that in a closed environment, the field radiance
L ¢(k;) comes from some surface with surface radiance L.(—k;) = L(k;) (Fig-
ure 19.7). The solid angle subtended by the point %' in the figure is given by

AA cos 8

Agy = ——,
bl =

where AA' the the area we associate with x'. Substituting for Ay in terms of
A A" suggesis the following transport equation:

plki ko) Lo(x'. x — x") cos 6, cos @'
L {x1 ng = [v
: Jall % visibbe 10 % Il — x']|2

dA’ .

Note that we are using a non-normalized vector x — x' to indicate the direction
from x' to % Also note that we are writing [, as a function of position and
direction.

The only problem with this new transport equation is that the domain of inte-
gration is awkward. If we introduce a visibility function, we can trade off com-
plexity in the domain with complexity in the integrand:

Lix. ko) = f ptki!kﬂ]L‘(xJ!x_x.l}?'l:x-xf] cosfycosd’ |
all x'

=2 =

where

e, x) = 1 ifx and x" are mutually visible,
. 0 otherwise.

Figure 19.7. The
fight coming into one point
comas from anothar paint.

(VAN

380 555 BO0 L.

Figure 19.8. The lu-
minous efficiency function
warsus wavalangth (nm).

462 19. Light

19.3 Photometry

For every spectral radiometric quantity there is a related phorometric quanriy
that measures how much of that quantity is “useful” to a human observer. Given
a spectral radiometric quantity fr.(A}, the related photometric quantity f, is

m 500 nm
fp = 68355 GLA)fr(A) dA,
A =180 nm
where §j is the fuminous efficiency function of the human visual system. This
function is zero outside the limits of integration above, so the limits could be
0 and oc and f, would not change. The luminous efficiency function will be
discussed in more detail in Chapter 20, but we discuss its general properties here.
The leading constant is to make the definition consistent with historical absolute
photometric quantities,

The luminous efficiency function is not equally sensitive to all wavelengths
{Figure 19,8}, For wavelengths below 380 nm (the nltravioler range), the light is
not visible to humans and thus has a § value of zero. From 380 nm it gradually
increases until A = 555 nim where it peaks. This is a pure green light. Then, it
gradually decreases until it reaches the boundary of the infrared region at 800 nm.

The photometric quantity that is most commonly used in graphics is fumi-
mance, the photometric analog of radiance:

lm 00 nm
Y= 1583—.,] T A)L{A) dA.
W A=180 nm
The symbol ¥ for luminance comes from colorimetry. Most other fields use the
symbol L we will not follow that convention because it is too confusing to use L
for both luminance and spectral radiance. Luminance gives one a general idea of
how “bright” something is independent of the adaptation of the viewer. Note that
the black paper under noonday sun is subjectively darker than the lower luminance
white paper under moonlight; reading too much into luminance is dangerous, but
it is a very useful quantity for getting a quantitative feel for relative perceivable
light output. The unit [stands for fumens. Note that most light bulbs are rated
in terms of the power they consume in watts, and the useful light they produce in
lumens. More efficient bulbs produce more of their light where § is large and thus
produce more lumens per watt. A “perfect” light would convert all power into
555 nim light and would produce 683 lumens per watt, The units of luminance are
thus (Im/W){W/{m?sr)) = lm/({m?sr). The quantity one lumen per steradian is
defined to be one candela (cd), so luminance is usually described in units cd/m?,

19.3. Photometry 463

Frequently Asked Questions

« What is “intensity™?

The term intensity is used in a variety of contexts and its use varies with both era
and discipline. In practice, it is no longer meaningful as a specific radiometric
quantity, but it is useful for intuitive discussion. Most papers that use it do 50 in
place of radiance.

» What is “radiosity"?

The term radiosity 15 used in place of radiant exitance in some fields. It is also
sometimes used to describe world-space light transport alporithms.

Notes

A common radiometric quantity nol described in this chapter is radiant intensity
(1), which is the spectral power per steradian emitied from an infinitesimal point
source. It should usually be avoided in graphics programs because point sources
cause implementation problems. A more rigorous treatment of radiometry can
be found in Analviic Methods for Simulated Light Transport (Arvo, 1995). The
radiometric and photometric terms in this chapter are from the Hlumination En-
gineering Society's standard that is increasingly used by all fields of science and
engineering (American National Standard Institute, 1986). A broader discussion
of radiometric and appearance standards can be found in Principles of Digital
Image Synthesis (Glassner, 1995).

Exercises

I. Foradiffuse surface with outgoing radiance L, what is the radiant exitance?

2. What is the total power exiting a diffuse surface with an area of 4 m? and a
radiance of L7

3. If a fluorescent light and an incandescent light both consume 20 watts of
power, why is the fluorescent light usually preferred?

20

Color

As discussed in Chapter 21, humans have three types of sensors (cones) active
at high levels of illumination. The signals to these three sensor Lypes determine
the color response of an observer. For this reason, color is naturally a three-
dimensional phenomenon. To quantitatively describe color we need to use a
well-defined coordinate system on that three-dimensional space. In graphics we
usually use “red-green-blue™ (RGB) colors o provide such a coordinate system.
However, there are infinitely many such coordinate systems we could apply o
the space, and none of them is intrinsically superior o any other system. For
specific circumstances, some color systems are better than others. This is analo-
gous 1o having coordinate systems in a city that align with the streets rather than
precise north/south/east/west directions. Thus, when we deal with colors, there
are a plethora of acronyms such as CMY, XYZ, HSV, and LUV that stand for
coordinate systems with three named axes. These are hard to keep straight,

In addition, color is an area that involves the physics of light entering the eye,
as well as the psychology of what happens to that light. The distinction between
what is physics, what is physiology, and what is cognition also tends to be confus-
ing. Making matters even more complicated is that some color spaces are oriented
toward display or print technologies, such as CMYK for ink-based printers with
three colored inks plus a black (K) ink, To clarify things as much as possible, this
chapter develops color perception from first principles. The discussion may seem
a bit too detailed for the humble RGB color spaces that result, but the subject of
color is intrinsically complex, and simplification is dangerous for such a central
topic in graphics.

465

468 20. Color

We begin with a section on light detectors and then develop basic trichromatic
{three color) theory, and this leads naturally 1o dealing with RGB display systems,
We also discuss the LMS and XYZ systems,

20.1 Light and Light Detectors

When the human eye “sees” something, it is because light enters the eve and hits
a light detector on the retina at the back of the eye, Similarly, a digital camera
records higher readings when more light hits a detector on the digital array at the
back of the camera.

The signal that reaches the detector varies with wavelength and can be de-
scribed by spectral radiance L{A) which represents the intensity of light coming
from a particular direction at a particular wavelength, The retina/lens acts much
like the radiance detector described in Section 19.1.5, with the lens allowing the
eye to collect more light than would be possible with & simple opening.

All light is not created equal; humans are more sensitive to some wavelengths
than others and are not sensitive at all to light outside the range [380 nrm, 800 nm|.
Cameras have a similar variable sensitivity, The response of any such detector
can be represented as an integral of the product of a weighting function w and the
spectral radiance it “sees:”

response = k [u%.jL[AJrM.

This response equation will thus be fundamental in any color theory. The some-
what arbitrary constant k will vary, as will the response function w which is a
characteristic of the sensors underlying the color theory.

20.2 Tristimulus Color Theory

If we assume that human color response is a result of several different types of
sensors in the eye. an immediate question is, “With how many types of sensors
are we dealing?" We now know that there are three types of sensors, called cones,
that describe our day color vision. To see how this was verified in the [8()s,
consider an experiment based on the hypothesis of three such sensor types. [f we
assume the sensors are independent, then the response of the sensors to a specific

20.2. Tristimulus Color Theory 4867

spectral radiance A{A) is (Wyszecki & Stiles, 1992)
5= f.u{,h]A{Jn}d}H
M= /m[}.]lﬂl[)a]d}..

L= /FM]A{A}&'J'.,

If two different radiances A(A) and Aa(A) produce the same (5, M. L), then
they are indistinguishable as far as the sensor system is concerned. Such matching
spectra are seen as the same color and are called metamers. This observation is
what allows us to verify that there are exactly three sensors,

Suppose we set up three spot lights which, when shined on a screen, have
spectral curves B A), G{A), and B(A), each with a control knob that scales them
up and down with fractions (v, g, b). The resulting spectral curve is

A(M) = rR(A) + gG(A) + bB(A).

The 5 response to this mixed light is

Sa= [sMHMM}.

= fs[.".] (rR(A) + 9GN] + bB(A)) dA

r[sfMR{A}dA+gf.n-[)x']ﬂMﬁ-:M+E: [ﬁ{MB{M{i}n

=rSp+ g5+ b5a.
The final equivalence is just the result of defining the S response to the full-
strength lights o be (S, 55, 5g).

Mow suppose we have a fourth light with spectral radiance (A) that we shine
on the screen next o the three overlapping colored lights, The sensor responses
to the fourth light are (S, M, L), Here is the key to our experiment: we can
adjust the (v, g. b) weighting for the three overlapping lights to make the lights
look the same to the sensors, L.e.,

Sc = 854 = rSa+g5z+b5R,
Me = Ma = rMg+gMg+ Mg,
Le = Lay = rLg+ f}f.-r; +hlg.

Note that this is just a linear system with three equations and three unknowns:
(r,g.b). Provided the system is not degenerate, there is a unique (r, g, b) that
satisfies it.

468 20. Color

This experiment was performed and users were able to make the colors match,
and thus it was verified that there are exactly three sensor types. An important
detail in the actual performance of the experiments is that there is no guarantee
that r, y and b values are non-negative or are bounded above by one, so in these
cases matches are impossible. However, if the users are allowed to also mix
combinations of the first three lights in with the fourth light, matches can always
be made. For example. if the match occurs when v = —0.2, then we can mix
(L.2R{A) in with the fourth light which has the same resull as subtracting (1.2 A
from the overlapping lights.

Once we have established that there are three sensors, the next important ques-
tion is, “What are the response functions s(A), m(A] and [{A)?" Unfortunately,
it is not possible using non-invasive procedures o infer these functions, and esti-
mates of these response functions were determined only in the 1980s. However,
we do not really need to know the cone response functions to come up with a color
matching scheme. We can take any three lights that are linearly independent and
use them to specify a color. For example, for the three lights discussed earlier, we
can just use the values (v, g.) to specify a color. IF two spectra are maiched by
the same (r, g, b}, then they are the same “color” Note that it is easily possible
to have two different spectra that are matched by the same (v, g, b), and they are
then metamers,

What are the best lights to use for matching so that color values can be stan-
dardized? This question was addressed in the 19305, and the XY 2 color system
was developed. It is still the overwhelming choice for specilying tristimulus color.
This system is discussed in the next section,

20.3 CIE Tristimulus Values

The CIE, a color standards organization, made the observation that once data was
tabulated for a given set of lights, the ristimulus values for a given spectrum
could be computed mathematically, They further observed that any set of real
lights would result in negative tristimulus values for some test spectra. They
decided there was no reason to restrict themselves 1o physically realizable lights,
For example, if data is known for real lights B{A), G{A), B(A), then we can
deduce data for linear combinations of those lights such as —R{A), G(A)—28(A),
BiA) + R{A) even though such lights cannot physically exist. The tristimulus
values would then be {(—r, g — 2b b+ r).

The CIE decided 1o use imaginary lights that had two especially nice features: ,

e ong of the lights is “grey™ and provides no hue information;
o the other two lights have zero luminance and provide only hue information.

A

20.4. Chromaticity 469

The response for these three lights is defined by the tiple (X, Y, Z) where Y
i5 the luminance. Because the eye responds only to light in the range 380 w0
BOO nanometers, these are the limits of integration listed. Since the weighting
functions drop to zero outside that range, it is somewhat redundant to have explicit
limits. The constant is 683 o conform 1o standards of luminance. The formula
for the CIE tristimufus values (X, Y, Z) is

el 1]

x=683 [#NLAMN
< AR0O
{0

¥ — mq:;f AV LA,
380

B0
Er[izi:if SN LA,
s

Any given spectral radiance will have a corresponding (X, Y, 2.

20.4 Chromaticity

Often, we want to factor out luminance and concentrate on color, The standard
way o do this is 1o use chromaricity values (Figure 2001)

X b
ey = | % — -
X+¥Y+2 X+Y+ 2

There is a similar formula for = but it is rarely used because 7 +y+ = 1. Instead
of XY Z, people often pass around only xyY . This way we can talk about “color™
and “intensity” separately. We can also compute XY Z from oy}

(XY, 2) = (i} fl;'—y_ﬂr) 1
v u

(2013
In some sense, we can consider (2, i) all of the information we need for fue,
the chromatic part of color. Because it is a 2D space, the colors associated with
the (&,) space can all be plotied on a flat page. An apparemt oddity is that the
[, i) points that have associated colors form an odd shape, and most points on
the real plane have no associated colors, Because all the tristimulus values are
non-negative, the values (. i) are also non-negative. Because each of (2.y) isa
non-negative number divided by a non-negative number at least as large, (. 4] is
restricted to the interval [0, 1)%. However, the values are even more restricted than
that.

470 20. Color

yellow' A

- N
| -
- .. g

Figure 20.1. The CIE xy space, The pure spectral colors make up the curved boundaries,
and the wavelangths (in nanometers) of the pure spectra are shown.

0.2

A table with the values for the tristimulus and scoptic sensitivity curves is
given in Table 20.2. Note that the value of § is never more than five times the
value of F. This means that, regardless of the spectral input, ¥ is never more
than five imes X, which restricts i to be at most 5/6. The most extreme cases
occur for pure spectral colors. The spectral radiance of a pure spectral color at
wavelength Ay is a scaled delta function kd(Ag). The tristimulus values are

(X, Y, Z) = GB3K{T (o), #{Ao), Z(Aa)).

The chromaticity values are thus

(20.2)

i }:(T Aa) #lAo))
WE A F00) + §00) + 200 Eho) + §lhe) + 300a)

20.4. Chromaticity

Afnm) [7 7 z i
380 | 0.0014 | 0.0000 | 0.0065 | 0.0006
| 390 | 0.0042 | 0.0001 | 0,0201 | 0.0022
[4D0 | D.DI43 | 0.00D4 | D.D679 | D.00D93
410 | 0.0435 | 0.0012 | 0.2074 | 0.0348
420 | 0.1344 | 0.0040 | 0.6456 | 0.0966
430 | 0.2839 | 00116 | 1.3856 | (.1998
440 | 03483 | 0.0230 | 1.7471 | 0.3281
450 | 0.3362 | 0,0380 | 1.7721 | 0.4550
460 | 0.2908 | 0.0600 | 1.6692 | (L5670
470 | 0.1954 | 0.0910 | 1.2876 | 0.6760
480 | 0.0056 | 0.1390 | 0.8310 | 0.7930
490 | 0.0320 | 0.2080 | 0.4652 | (.9040
500 | 0.0049 [03230 | 0.2720 | 0.9820
510 | 0.0093 | 0.5030 | 0.1582 | 0.9970
\ 520 | 0.0633 | 0.7100 | 0.0782 | 0.8350
530 | 0.1655 | 0.8620 | 0.0422 | 08110
\ 540 | 0.2904 | 0.9540 | 0.0203 | 0.6500
550 | 04334 | (09950 | 0.0087 | 04810
560 | 0.5945 | 0.9950 | 0L0039 | (.3288
570 | 0.7621 | 09520 | 0.0021 | 0.2076
580 | 09163 | 0.8700 | 0.0017 | 0.1212
590 | 10263 | 0.,7570 | 0.0011 | 0.0655
600 | 1.0622 | 0.6310 | 0.0008 | 0,0332
610 | 1.0026 | 0.5030 \ (L0003 | 0.0159
620 | (.8544 | 0.3810 | 0.0002 | 0.0074
630 | 0.6424 | 0.2650 | 0.0000 | 0.0033
640 | 0.4479 | 0.1750 | 0.0000 | 0.0015
650 | 0.2835 | 0.1070 | 0.0000 | 0.0007
660 | 0.1649 | 0.0610 | 0.0000 | 0.0003
670 | 0.0874 | 0.0320 | 0.0000 | 0.0001
630 \u.maa 0.0170 | 0,.0000 | 0.0001
690 | 0.0227 | 0.0082 | 00000 | 0.0000
| 700 | 00114 | 0.0041 | 0.0000 | 0.0000
710 | 0.0058 | 0.0021 | 0,0000 | 0.0000
720 | 0,0029 | 0.0010 | 0.0000 | 0.0000
730 | 0.0014 | 0.0005 | (.0000 | 0.0000
740 | 0.0007 | 0.0002 | 0.0000 | 0.0000
750 | 00003 | 0.0001 | 0.0000 | 0.0000
760 | 0.0002 | 0.0001 | 0.0000 | 0.0000
770 | 00001 | 0.0000 | 0.0000 | 0.0000

Figure 20.2. \alues for the scotopic and 1931 CIE tristimulus sensitivity

curves (Fea, 1993).

47

472 20. Color

20.5 Scotopic Luminance

For low levels of illumination, such as moonlight, your eyes go into a different
perceptual mode, and the spectral sensitivity changes. The values of XY Z be-
come irrelevant, and the scotopic luminance determines light and dark:

40
V= k‘f v (A)L(A)dA,

3800
where the constant k' = 17003 is chosen so that a monochrome 535 nm beam
(the peak sensitvity of day vision) will have the same luminance and scotopic
luminance.

Often we are presented with trichromatic values (X, Y, Z) for data that is
actually in the scotopic range and V' would be of more use. Although it is not
possible to deduce V' from trichromatic values, Ward has shown that in many cir-
cumstances the following empirical formula performs reasonably (Larson, Rush-
meier, & Piatkao, 1997}

V=Y [1.3.'5 (l + : ;) = l.ﬁﬁ] : (20.3)

20.6 RGB Monitors

We sometimes know the tristimulus values lor the RGB channels of our CRT,
Let's say these are (X, Y, Z,) for the red channel, (X, ¥, Z,) for the green
channel, and { X4, ¥3, £,) for the blue channel. If we assume a perfect black point ‘
for the monitor (unlikely), then given a pamma-corrected RGB signal of (r, g, b),
we can compute the screen wistimulus values (X, Y., Z,)

X. rX, +gX; +bX, Xr Xg Xy| (T
Y,|=|+a¥,+t% [=Y. ¥ %] |e]. :

Z 12+ 9Z, +bZy B Ky 2] |B

You can invert the above equation to figure out how to set (r, g4, 0) given a de-
sired (X, Y, Z). Note that you may get values much larger than 1.0, or smaller
than (.0, so you will need to do some manipulation to deal with that problem.
However, there is a bigger problem. Monitor manufacturers almost never 1ell
yvou (XN Y., Z,) etc, Instead they provide the chromaticity of the phosphors
(et) (g) (oo, s, and the chromaticity of the white point (24,).
In addition, you can vsually measure the luminance Y, of the brightest white
screen with a photometer. If vou can’t measure that, assume it is approximately

=

20.7. Approximate Color Manipulation 473

Vo = 100 ed /1mi®. The reason manufacturers don't tell vou Y, is that your bright-
ness control changes it. The reason the white point varies is that “white” is usually
the average color in the room, Thus, what looks white in a fluorescent-lit room
will have dominant short wavelengths, and what looks white in an incandescent-
lit room will have dominant long wavelengths. So, if you move a monitor with a
white-looking image from a fluorescent-lighted room 1o a incandescent-lit room
that same display will look blue. This same issue causes photographers to buy
“daylight” or “tungsten’ film.

To convert the information the manutacturers provide (tristimulus values), we
need to do some algebra, First, let's write a straightforward equality:

X X X ;

v ¥ %l% ¥
1 1 1 Yol = | Y

2. A o F A 7
v v .!I".-: }J‘r -Jn'

=

Now, after some substitutions, we have only (Y. ¥,. ¥},) as unknowns:

Iy Iy g Y, T

Ue Wa m r tan

:I t I }’q = }"u-
L—mp—p 1=®y—py loaa—yp ¥: =2 — e SV

Yr e [2 T

We can use numerical methods, or (algebraically) Cramer's rule, 1w solve for
(¥;, Y. ¥,): Once we have that, we can get (X, X, X3). (¥..Y, Y.
[, 2, Zy) using Equation 20.1, Now that we have this result, we can apply
it for specific monitor parameters. These can either be measured, or a stan-
dard can be used if appropriate such as those in (ITU, 1990) or on the web at
hiep:fwww.ow3 org/Graphics/Color/sRGB himl,

20.7 Approximate Color Manipulation

Although the technigues of the previous section are useful for highly controlled
settings, in practice we rarely know enough data to use them. Often we make im-
ages that are to be displayed on many unknown monitors, e.g., an image for a weh
page. It is convenient o use a “normalized” space where (R, G, B) = (1.1, 1)
transforms to (X, Y. Z) = (1.1, 1) and the R7 B space 15 “reasonable™ for most
real monitors. Such a space is given in Color Transfer Between mages (Rein-
hard, Ashikhmin, Gooch, & Shirley, 2001) and is presented here with a slight

474 20. Color

maodification:

[X [05149 03244 0.1607] [R]
Y = (0.2654 0.6704 00642 |G| . {20.4)
| Z | 00248 01248 0.8504] |[B]
(i [25623 —1.1661 —0.3962] [X]
s = —1.0215 1.9778 0.0437 ¥, {20.5)
B | 00752 -0.2562 1.1810] | Z |
L [0.3897 0.6890 —0.0787] [X]
M = —0.2298 1.1834 00464 | Y|, (20.6)
S | | 0.0000 00000 10000 | Z
X7 [19102 -1.1122 0.2009] [L7
Y| = 0.3709 0.6201 0.0000| |M]. (20.7)
Z) | 0.0000 0.0000 1.0000] | S|

This gives the following transformation between RGE and LMS cone space:
L] [0.3816 0.5785 0.0399] [R
M = (.1969 0.7246 00785 |G (20L8)
8] | 0.0248 01248 0.8504| |B
R] 4.4620 -3.5832 0.1213] [L
G| = |[-12178 23803 -0.1626| |M|. (20.9)
B 0.0486 —0.2448 11962 | S

20.8 Opponent Color Spaces

While there exist many “intuitive” color spaces that create three dimensions within
color, perhaps the best known are the apponent color madels (Wyszecki & Stiles,
1992), These have three channels that are typically similar to:

Achromatic = r + g + b,
Yellow-blue @ r 4+ g — b, {20,109
Red-green o r — g.

Although there 15 some biological justification for this type of model, it was pro-
posed in the 1800s based on subjective experience (Wyszecki & Stiles, 1992),
For example, there is an experience of bluish-green, but not yellowish-blue. The
implication is that there are different channels for blue and green, but that there is
a shared channel that 1s either yellow or blue, but not both,

20.8. Opponent Color Spaces 475

While some opponent models assume a log space (Ruderman, Cronin, &
Chiao, 1998, Reinhard et al., 2001), we present a linear model here, where o
and 7 are the chromatic channels:

#F = 0 0| e 3 FTH
al =10 ;’,ﬁ 4] 1 1 =2 M
A 0 0 ;;1.5 1 -1 0]]8
tT 1 1 1[€ o ol
Ml=|1 iy = 0 3;_5 ol la
s] L1 -2 of|og o &8

Frequently Asked Questions

= What is "hue"?

Hue is the dominant color name of the “non-white” component of the color. For
example. the hue of pink is red. Many color systems encode hue as an angle from
0° to 3607, with red at 07, green at 120" and blue at 2407,

» What is “lightness"?

Lightness is the overall intensity of the reflectance of a surface. This is minimal
for black, and maximum for white. Two colors with different hues can have the
same lightness. Lightness is often encoded as a zero to one scale.

» What is “saturation"?

Saturation is the purity of a color. For example, red is more saturated than pink,
and grey is not saturated at all.

= What is “value"?

Value is another word for lightness, but often it is expressed as a numeric scale
that is approximate. For example, in some systems value is the average of the
RGB values. Thus two colors with the same value might have different subjective
lightness because the RGB channels are perceived differently.

476 20. Color

Notes

A good survey of color for computer graphics users is Computer Generared Color
(Tackson, MacDonald, & Freeman, 1994). Books written from the color science
perspective are The Reproducrion af Colowr (Hunt, 2004) and Color Appearance
Models (Fairchild, 2005). The color spaces for color-deficient viewers are dis-
cussed in (Meyer & Greenberg, 1988)

Exercises

I. Plot the outling of the CIE chromaticity diagram using Equation 20).2,

F-a

What is the one physically possible CIE (.) value that can be zero? '

3. Write a program to scale the individual color channels separately in RGB
and opponent space. Which produces worse artifacts?

William B. Thompson

21

Visual Perception

The ultimate purpose of computer graphics is to produce images for viewing by
people. Thus, the success of a compuler graphics system depends on how well it
conveys relevant information to a human observer. The intrinsic complexity of the
physical world and the limitations of display devices make it impossible to present
a viewer with the identical patterns of light that would occur when looking at a
natural environment. When the goal of a computer graphics system is physical
realism, the best we can hope for is that the system be percepiually effective:
displayed images should “look™ as intended. For applications such as technical
illustration. it is often desirable to visvally highlight relevant information and
perceplual effectivencss becomes an explicit requirement.

Artists and illusirators have developed empirically a broad range of tools and
techniques for effectively conveying visual information. One approach Lo improv-
ing the perceptual effectiveness of computer graphics is to utilize these methods
in our automated systems. A second approach builds directly on knowledge of
the human vision system by using percepiual effectivengss as an optimization cri-
teria in the design of computer graphics systems, These two approaches are not
completely distinct. Indeed, one of the first systematic examinations of visual
perception is found in the notebooks of Leonardo da Vinei,

The remainder of this chapter provides a partial overview of what is known
about visual perception in people. The emphasis is on aspects of human vision
that are most relevant to computer graphics. The human visual system is ex-
tremely complex in both its operation and its architecture. A chapter such as this

477

478 21. Visual Perception

can at best provide a summary of key points, and it is important to avoid over
generalizing from what is presented here. More in-depth treatments of visual per-
ception can be found in Wandell (1995) and Palmer (1999); Gregory (1997} and
Yantis (2000) provide additional useful information. A good computer vision ref-
erence such as Forsyth and Ponce (2002) is also helpful. It is important to note
that despite over 150 years of intensive research, our knowledge of many aspects
of vision is still very limited and imperfect.

21.1 Vision Science

Vision is generally agreed 1o be the most powerful of the senses in humans.
Light: Vision produces more useful information about the world than does heaning,
touch, smell, or taste. This is a direct consequence of the physics of light (Fig-

: :::: fT:;I ure 21.1). umination is pervasive, especially during the day but also at night

) .. due to moonlight, starlight, and artificial sources. Surfaces reflect a substantial
e travels in straight lines . e i (R 2 i i
o interacts with stut portion of incident illumination and do so in ways that are idiosyncratic to par- ,
e bounces off things ticular materials and that are dependent on the shape of the surface. The fact
® is produced in nature that light (mostly) travels in straight lines through the air allows vision to acquire
& has lots of energy information from distant locations.

—Stevan Snales The study of vision has a long and rich history. Much of what we know

Eﬁf:ﬁﬂ; w;gﬁ Emp;r:;f about the eye traces back to the work of philosophers and physicists in the 1600s,

ful sense, Starting in the mid-1800s, there was an explosion of work by perceptual psy-
chologists exploring the phenomenology of vision and proposing models of how
vision might work., The mid-19s saw the start of modern neuroscience, which
investigates both the fine-scale workings of individual neurons and the large-scale
architectural organization of the brain and nervous system. A substantial portion
of neuroscience research has focused on vision. More recently, computer science
has contributed to the understanding of visual perception by providing tools for
precisely describing hypothesized models of visual computations and by allow-
ing empirical examination of computer vision programs. The term vision science
wag coined to refer to the multidisciplinary study of visual perception involving
perceptual psychology, neuroscience, and computational analysis.

Vision science views the purpose of vision as producing information about |
objects, locations, and events in the world from inaged patterns of light reach-
ing the viewer, Psychologists use the term distal srimulus 1o refer to the physical
world under observation and proximal stimulus to refer to the retinal image.' Us-

UIn computer vision, the temm scene is often used o refer to the external world, while the term
image is used o refer to the projection of the scene onto a sensing plane.

.

21.2. Visual Sensitivity 479

ing this terminology, the function of vision is to generate a description of aspects
of the distal stimulus given the proximal stimulus. Visual perception is said to be
veridieal when the description that is produced accurately reflects the real world.
In practice, it makes little sense to think of these descriptions of objects, locations,
and events in isolation. Rather, vision is better understood in the context of the
motor and cognitive functions that it serves,

21.2 Visual Sensitivity

Vision systems create descriptions of the visual environment based on properties
of the incident illumination. As a result, it is important to understand what prop-
erties of incident illumination the human vision system can actually detect. One
critical observation about the human vision system is that it is primarily sensi-
tive 1o patterns of light rather than being sensitive 1o the absolute magnitude of
light energy. The eye does not operate as a photometer, Instead, it detects spatial,
temporal, and spectral patterns in the light imaged on the retina and information
about these patterns of light form the basis for all of visual perception,

There is a clear ecological utility to the vision system's sensitivity to variations
in illumination over space and time. Being able to accurately sense changes in the
environment is crucial to our survival.® A system which measures changes in
light energy rather than the magnitude of the energy itself also makes engineering
sense, since it makes it easier to detect patterns of light over large ranges in light
intensity. It is a good thing for computer graphics that vision operates in this
manner. Display devices are physically limited in their ability to project light
with the power and dynamic range typical of natural scenes. Graphical displays
would not be effective if they needed to produce the identical patterns of light as
the corresponding physical world. Fortunately, all that is required s that displays
be able to produce similar patterns of spatial and temporal change to the real
world.

21.2.1 Brightness and Contrast
In bright light, the human visual system is capable of distinguishing gratings con-

sisting of high contrast parallel light and dark bars as fine as 50-60 cycles/degree.
“In this case, a “cycle” consists of an adjacent pair of light and dark bars.) For

1 is sometime said that the primary goals of vision are o support eating, avoiding being eaten,
reproduction, and avoidance of catastrophe while moving. Thinking about vision #s a goal-directed
activity is-often useful, but needs to be done so at 8 more detailed bevel.

480 21. Visual Perception

Figure 21.2. The contrast between stripes Increases in a constant manner from top 1o
bottom, yat the threshold of visibility varies with frequancy.

comparison, the best currently available LCD computer monitor, at a normal
viewing distance, can display patterns as fine as about 20 cycles/degree. The
minimum contrast difference at an edge detectable by the human visual system
in bright light is about 1% of the average luminance across the edge. In most
B-bit displays, differences of a single gray level are often noticeable over at least
a portion of the range of intensities due to the nature of the mapping from gray
levels to actual display luminance.

Characterizing the ability of the visual system to detect fine scale patterns (vi-
sueal acuity) and to detect changes in brightness is considerably more complicated
than for cameras and similar image acquisition devices, As shown in Figure 21.2,
there is an interaction between contrast and acuity in human vision. In the figure,
the scale of the pattern decreases from left to right while the contrast increases
from top o bottom, If you view the figure at a normal viewing distance, it will
be clear that the lowest contrast at which a pattern is visible is a function of the
spatial frequency of the pattern.

There is a linear relationship between the intensity of light L reaching the eye
from a particular surface point in the world, the intensity of light | illuminating
that surface point, and the reflectivity K of the surface at the point being observed:

L=al-R, (21.0)

21.2. Visual Sensitivity 481

Figure 21.3. Lightness constancy. Casta shadow over one of the patterns with your hand
and notice that the apparant brightness of the two center squares ramains nearly the same.

where v is dependent on the relatienship between the surface geometry, the pat-
tern of incident illumination, and the viewing direction. While the eve is only
able to directly measure L, human vision is much better at estimating & than L.
To see this, view Figure 21.3 in bright direct light. Use your hand to shadow one
of the patterns, leaving the other directly illuminated. While the light refiected off
of the two patterns will be significantly different. the apparent brightness of the
two center squares will seem nearly the same. The term lighmess is often used
to describe the apparent brightness of a surface, as distinct from its actual lumi-
nance. In many situations, lightness is invariant to large changes in illumination,
a phenomenon referred to as lightness constaney,

The mechanisms by which the human visual system achieves lightness con-
stancy are not well understood. As shown in Figure 21.2, the vision system is
relatively insensitive 1o slowly varying patterns of light, which may serve to dis-
count the effects of slowly varying illumination. Apparent brightness is affected
by the brightness of surrounding regions (Figure 21.4), This can aid lightness
constancy when regions are illuminated dissimilarly,. While this simulraneous
contrast effect is often described as a modification of the perceived lightness of

{a) it

Figure 21.4. (a) Simultanecus contrast: the apparent brightness of the center bar is affected
by the brightness ol the surrounding area; (b) The same bar without a variable surround,

a

Figure 21,6. The percep-
ticn of ightness iz affected
by the perception of 3D
structure. The two surfaces
markad (a) have the same
brightness, as do the two
surfacas marked (b) (after
Adelson (1999)).

—

482 21. Visual Perception

(a) (b

Figure 21.5. The Munker-White illusion shows the complexity of simultaneous contrast. In
Figure 21.4, the central reglon looked lighter when the surrounding area was darker. In (a),
the gray strips on the left look fighter than the gray strips on the right, even though they are
nearly surrounded by ragions of white; (b} shows the gray strips without the black lines.

one region based on contrasting brightness in the surrounding region, it is actually
much more complicated than that (Figures 21.5 and 21.6). For more on lightness
perception, see (Gilchrist et al., 1999) and (Adelson, 1999},

While the visual system largely ignores slowly varying intensity patterns, it
is extremely sensilive to edges consisting of lines of discontinuity in brighiness.
Edges in imaged light intensity often correspond to surface boundaries or other
important features in the environment (Figure 21.7). The vision system can also
detect localized differences in motion, stereo disparity, texture, and several other

S ——

T P 1L ©J
L ;TJ o P M
-y 0 1

—
¥ =

=7
_____.-—u_—'“_:,.]
— S

=
[g
o2k
b

_"{'..-1
P

{a) ib)
Figure 21.7. (a) Criginal gray scale image, (b) image edges, which are lines of high spatial
variability in some direction.

21.2. Visual Sensitivity 483

Figure 21.8. The visual system sometimes sees "edges” even when there are no sharp
discontinuities in brightness, as is the case at the right side of the central pattern in this
image.

image properties. The vision system has very little ability, however, to detect
spatial discontinuities in color when not accompanied by differences in one of
these other properties.

Perception of edges seems to interact with perception of form. While edges
give the visual system the information it needs to recognize shapes, slowly varying
brightness can appear as a sharp edge if the resulting edge creates a more complete
form (Figure 21.8). Figure 21.9 shows a subjective contoyr, an extreme form of
this effect in which a closed contour is seen even though no such contour exists
in the actual image. Finally, the vision system's sensitivity to edges also appears
to be part of the mechanism involved in lightness perception. Note that the region
enclosed by the subjective contour in Figure 21.9 appears a bit brighter than the
surrounding area of the page. Figure 21.10 shows a different interaction between
edges and lightness. In this case, a particular brightness profile at the edge has
a dramatic effect on the apparent brightness of the surfaces to either side of the
edge.

\l l\i,f:
=, S

Figure 21.9. Sometimes, the visual system will "ses” subjective corfours without any
asgociated change in brightness.

484 21, Visual Perception

Figure 21.10. Perceived lightness depands mora on local contrast at adges than on bright-
ness across surfaces. Try covering the vertical edge in the middie of the figure with a pencil.
This figure is an instance of the Crafk-0'8rign-Comswaat fusion.

As indicated above, people can detect differences in the brighiness between
two adjacent regions if the difference is at least 1% of the average brighiness.
This is an example of Weber's law, which states that there is a constant ratio
between the just noticeable differences (Ind) in a stimulus and the magnitude of
the stimulus:

. S 212
7 1 (3

where [is the magnitude of the stimulus, AJ is the magnitude of the just notice-
able difference. and & is a constant particular to the stimulus. Weber's law was
posiulated in 1846 and still remains a wseful characterization of many perceptual
effects. Fechner's law, proposed in 1860, generalized Weber's law in a way that
allowed for the description of the strength of any sensory experience, not just
jnd’s:

5 = ke log(l), 213

where & is the perceptual strength of the sensory experience, [is the physical
magnitude of the corresponding stimulus, and #; is a scaling constant specific to
the stimulus, Current practice is to model the association between perceived and
actual strength of a stimulus using a power function (Srevens s law):

5 = kyI® (21.4)

where S and J are as before, k4 is another scaling constant, and b is an exponent
specific (o the sumulus, For a large number of perceptual guanuities involving
vision, & < 1. The CIE L*a*b* color space, described elsewhere, uses a mod-
ified Stevens’s law representation to characierize perceptual differences between
brightness values. Note that in the first two characterizations of the perceptual
strength of a stimulus and in Steven's Law when b < 1, changes in the stimulus

21.2. Visual Sensitivity 485

when it has a small average magnitude create larger perceptual effects than do the
same physical change in the stimulus when it has a larger magnitude.

The "laws" describe above are not physical constraints on how perception
operates, Rather, they are generalizations about how the perceptual system re-
sponds to particular physical stimuli. In the field of perceptual psychology, the
guantitative study of the relationships between physical stimuli and their percep-
tual effects is called psychophivsics, While psychophysical laws are empirically
derived observations rather than mechanistic accounts, the fact that so many per-
ceptual effects are well modeled by simple power functions is striking and may
provide insights into the mechanisms involved.

21.2.2 Color

In 1666, lsaac Newton used prisms to show that apparently white sunlight could
be decomposed into a specrrum of colors and thar these colors could be recom-
bined to produce light that appeared white. We now know that light energy is
made up of a collection of photons, each with a particolar wavelength. The spec-
tral distribution of light is a measure of the average energy of the light at each
wavelength. For natural illumination, the spectral distribution of light reflected
off of surfaces varies significantly depending on the surface material. Character-
izations of this spectral distribution can therefore provide visual information for
the nature of surfaces in the environment.

Most people have a pervasive sense of color when they view the world. Color
perception depends on the frequency distribution of light, with the visible spec-
trum for humans ranging from a wavelength of about 370 nm to a wavelength of
about 730 nm (see Color Plate XVI). The manner in which the visual systems
derives a sense of color from this spectral distribution was first svstematically ex-
amined in 1801 and remained extremely controversial for 150 years. The problem
is that the visual system responds to patterns of spectral distribution very differ-
ently than patterns of luminance distribution.

Even accounting for phenomena such as lightness constancy, distinctly differ-
ent spatial distributions almost always look distinctly different. More importantly
given that the purpose of the visual system is to produce descriptions of the distal
stimulus given the proximal stimulus, perceived patterns of lightness correspond
at least approximately to patterns of brightness over surfaces in the environment,
The same is not true of color perception. Many quite different spectral distri-
butions of light can produce a sense of any specific color. Correspondingly, the
sense that a surface is a specific color provides little direet information about the
spectral distribution of light coming from the surface. For example, a spectral

“The history of the invesh-

gation of colour vision is re-

markatie for ifs acrimony”
—Richard Gregory (1857}

486 21. Visual Perception

distribution consisting of a combination of light at wavelengths of 7({) nm and
540 nm, with appropriately chosen relative strengths, will look indistinguishable
from light at the single wavelength of 580 nm. (Perceptually indistinguishable
colors with different spectral compositions are referred to as metamers.) If we see
the color “yellow,” we have no way of knowing if it was generated by one or the
other of these distributions or an infinite family of other spectral distributions. For
this reason, in the context of vision the term color refers to a purely perceptual
quality, not a physical property.

There are two classes of photoreceptors in the human retina. Cones are in-
volved in color perception, while rods are sensitive to light energy across the
visible range and do not provide information about color. There are three types of
cones, each with a different spectral sensitivity (Figure 21.11). S-cones respond
to short wavelengths in the blue range of the visible spectrum. M-conres respond
to wavelengths in the middle (greenish) region of the visible spectrum, L-cones
respond to somewhat longer wavelengths covering the green and red portions of
the visible spectrum.

While it 1s common to describe the three types of cones as red, green, and
blue, this is neither correct terminology nor does it accurately reflect the cone
sensitivities shown in Figure 21.11. The L-cones and M-cones are broadly tuned,
meaning that they respond to a wide range of frequencies. There is also substantial
overlap between the sensitivity curves of the three cone types. Taken together,
these two properties mean that it is not possible to reconstruct an approximation
to the original spectral distribution given the responses of the three cone types.
This is in contrast to spatial sampling in the retina (and in digital cameras), where

wawvélangih (nanomataers)

Figure 21.11. Spectral sensitivity of the short, medium, and long cones in the human retina.

21.2. Visual Sensitivity 487

the receptors are narrowly tuned in their spatial sensitivity in order to be able to
detect fine detail in local contrast.

The fact that there are are only three types of color sensitive photoreceptors
in the human retina greatly simplifies the task of displaying colors on computer
monitors and in other graphical displays. Computer monitors display colors as
a weighted combination of three fixed color distributions. Maost often, the three
colors are a distinct red, a distinct green, and a distinct blue. As a result, in
computer graphics, color is often represented by a red-green-blue (RGB) triple,
representing the intensities of red, green, and blue primaries needed to display
a particular color. Three basis colors are sufficient to display most perceptible
colors, since appropriately weighted combinations of three appropriately chosen
colors can produce metamers for these perceptible colors.

There are at least two significant problems with the RGE color representation.
The first is that different monitors have different spectral distributions for their
red, green, and blue primaries. As a result, perceptually correct color rendition
involves remapping RGB values for each monitor. This is of course only possible
if the original RGE values satisfy some well defined standard, which is often not
the case. See Chapter 20 for more information on this issue. The second problem
is that RGB values do not define a particular color in a way that corresponds 1o
subjective perception. When we see the color “yellow” we do not have the sense
that it is made up of equal parts of red and green light. Rather, it looks like a single
color, with additional properties involving brightness and the “amount™ of color.
Representing color as the output of the S-cones, M-cones, and L-cones is no help
either, since we have no more phenomenological sense of color as characterized
by these properties than we do as characterized by RGB display properties.

There are two different approaches to characterizing color in a way that more
closely reflects human perception. The various CIE color spaces aim to to be
“percepiually uniform™ so that the magnitude of the difference in the represented
values of two colors is proportional to the perceived difference in color (Wyszecki
& Stiles, 1992). This turns out to be a difficult goal to accomplish, and there
have been several modifications to the CIE model over the years. Furthermore,
while one of the dimensions of the CIE color spaces corresponds 1o perceived
brightness, the other two dimensions that specify chromaticity have no intuitive
meaning.

The second approach to characterizing color in a more natural manner starts
with the observation that there are three distinet and independent properties that
dominate the subjective sense of color, Lightness, the apparent brightness of a
surface, has already been discussed. Satwration refers to the purity or vividness
of a color. Colors can range from totally unsaturated gray to partially saturated

488 21. Visual Perception

pastels to fully saturated “pure” colors. The third property, fiwe. corresponds most
closely 1o the informal sense of the word “color” and is characterized in a man-
ner similar to colors in the visible spectrum, ranging from dark violet o dark
red. Color Plate XVII shows a plot of the hue-saturation-lightness (HSV) color
space. Since the relationship between brightness and lightness is both complex
and not well understood, HSV color spaces almost always use brightness instead
of attempting to estimate lightness. Unlike wavelengths in the spectrum, however,
hue is usually represented in a manner that reflects the fact that the extremes of
the visible spectrum are actoally similar in appearance (Color Plate XVII1), Sim-
ple transformations exist between RGEB and HSV representations of a particular
color value, As a result, while the HSV color space is motivated by perceptual
considerations, it contains no more information than does an RGB representation.

The hue-saturation-lightness approach to describing color is based on the
spectral distribution al a single point and so only approximates the perceptual
response to spectral distributions of light distributed over space. Color percep-
tion is subject to similar constancy and simultaneous contrast effects as is light-
ness/brightness, neither of which are captured in the RGB representation and as
a result are not captured in the HSV representation. For an example of color
constancy, look at a piece of white paper indoors under incandescent light and
outdoors under direct sunlight. The paper will look “while™ in both cases, even
though incandescent light has a distinctly yellow hue and so the light reflected off
af the paper will also have a vellow hue, while sunlight has o much more uniform
color spectrum,

Another aspect of color perception nol capiured by either the CLE color spaces
or HSV encoding is the fact that we see a small number of distinct colors when
locking at a continuous spectrum of visible light (Color Plate XVI) or in a nat-
urally occurring rainbow. For most people, the visible spectrum appears to be
divided into four to six distinet colors: red, vellow, green, and blue, plus perhaps
light blue and purple. Considering non-spectral colors as well, there are only
eleven basic color terms commonly used in English: red, green, blue, vellow,
black, white, grav, orange, purple, brown, and pink. The partitioning of the in-
trnsically continuous space of spectral distributions into a relatively small set of
perceptual categories associated with well defined linguistic terms seems to be a
basic property of perception, not just a cultural artifact (Berlin & Kay, 1969), The
exact nature of the process, however, is not well understood.

21.2.3 Dynamic Range

Matural illumination varies in intensity over 6 orders of magnitude (Figure 21.12).
The human vision svstem is able to operate over this full range of brightness lev-

21.2, Visual Sensitivity 480

els. However, at any one point in time the visual system is only able to detect vari-
ations in light intensity over a much smaller range. As the average brightness o
which the visual system is exposed changes over time, the range of discriminable
brightnesses changes in a corresponding manner. This effect is most obvious if we
move rapidly from a brightly lit outdoor area to a very dark room. At first, we are
able to see little. Afier a while, however. details in the room start to become ap-
parent. The dark adaprarion that oceurs involves a number physiological changes
in the eye. It takes several minutes for significant dark adaptation to occur and 40
minutes or so for complete dark adaptation. If we then move back into the bright
light, net only is vision difficult but it can actually be painful. Light adaptation is
required before it is again possible to see clearly. Light adaptation occurs much
more quickly than dark adaptation, typically requiring less than a minute.

The two classes of photoreceptors in the human retina are sensitive to dif-
ferent ranges of brightness. The cones provide visual information over most of
what we consider normal lighting conditions, ranging from bright sunlight to dim
indoor lighting. The rods are only effective at very low light levels. Photopic
vision involves bright light in which only the cones are effective. Scotopic vision
involves dark light in which only the rods are effective. There is a range of inten-
sities within which both cones and rods are sensitive to changes in light, which is
referred to as mesopic conditions (see Chapter 22),

21.2.4 Field-of-View and Acuity

Each eye in the human visual system has a field-of-view of approximately 160°
horizontal by 1357 vertical. With binocular viewing, there is only partial overlap
between the fields-of-view of the two eves. This results in a wider overall feld-of-
view (approximately 200° horizontal by 135 vertical), with the region of overlap
being approximately 120° horizontal by 135 vertical,

With normal or corrected-to-normal vision, we usually have the subjective
experience of being able to see relatively fine detail wherever we look. This is an
illusion, however. Only a small portion of the visual field of each eye is actually
sensitive o fine detail. To see this, hold a piece of paper covered with normal-
sized text al arms length, as shown in Figure 21,13, Cover one eve with the hand
not holding the paper. While staring at your thumb and not moving your eye, note
that the text immediately above your thumb is readable while the text o either
side is not. High acuity vision is limited to a visual angle slightly larger than
your thumb held at arm’s length. We do not normally notice this becanse the
eyes usually move frequently, allowing different regions of the visual field to be
viewed at high resolution. The visual system then integrates this information over

direct sunfight 10°

indaaor fighting 10¢
mmooniight 19
starlight 10— |

Figure 21.12. Approe
jmate luminance lavel of
a white surface under dif-
ferant types of ilumination
in candelas per maeter
squared [cd.-'mijl. (Wandell,
16995).

430 21. Visual Perception

Figure 21.13. I you hold a page of text at arm's langth and stare at your thumb, only the
text near your thumb will be readable. Phalo by Pafer Shirley:

time to produce the subjective experience of the whole visual ficld being seen al
high resolution.

There is not enough bandwidth in the human visual cortex to process the infor-
mation that would result if there was a dense sampling of image intensity over the
whole of the retina. The combination of variable density photoreceptor packing
in the reting and a mechanism for rapid eye movements (o point at areas of in-
terest provides a way W simultaneously optimize acuity and field-of-view. Other
animals have evolved different ways of balancing acuity and field-of-view that
are notl dependent on rapid eye movements. Some have only high acuity vision,
but limited o a narrow field-of-view. Others have wide field-of-view vision. but
limited ability to see detail.

The eye motions which focus areas of interest in the environment on the fovea
are called saccades. Saccades occur very quickly. The time from a triggering
stimulus ta the completion of the eve movement is 150-200 ms. Most of this ime
is spent in the vision system planning the saccade. The actual motion takes 20 ms
or 50 on average. The eyes are moving very quickly during a saccade, with the
maximum rotational velocity often exceeding 300°/second. Between saccades,
the eyes point towards an area of interest {fixare), taking 300 ms or 50 (o acguire
fine detail visual information. The mechanism by which multiple fixations are
integrated to form an overall subjective sense of fine detail over a wide field of
view is not well understood.

Figure 21.14 shows the variable packing density of cones and rods in the hu-

man retina, The cones, which are responsible for vision under normal lighting,
are packed most closely at the foveq of the retina (Figure 21.14). When the eye

T

21.2. Visual Sensitivity 491
" 15%10°
E
2
E 1.0%10°
<}
g 0.5 % 10°
Ig I i
70 0 a0
away from midline fovea towards midline

Figure 21.14. Density of rods and cone in the human retina (after Osterberg (1935)),

is fixated at a particular point in the environment, the image of that point falls on
the fovea. The higher packing density of cones at the fovea results in a higher
sampling frequency of the imaged light (see Chapter 4) and hence greater detail
in the sampled pattern. Foveal vision encompasses about 1.7°, which is the same
visual angle as the width of your thumb held at arm’s length.

While a version of Figure 21.14 appears in most introductory texts on human
visual perception, it provides only a partial explanation for the neurophysiological
limitations on visual acuity. The output of individual rods and cones are pooled in
various ways by neural interconnects in the eve. before the information is shipped
along the optic nerve to the visual cortex.” This pooling filters the signal provided
by the pattern of incident illumination in ways that have important impacts on the
patterns of light that are detectable. In particular, the farther away from the fovea,
the larger the area over which brightness is averaged. As a consequence, spatial
acuity drops sharply away from the fovea, Most figures showing rod and cone
packing density indicate the location of the retinal biind spoi, where the nerve
bundle carrying optical information from the eye to the brain passes through the
reting, and there is no sensitivity to light, By and large, the only practical impaci
of the blind spot on real-world perception is its use as an illusion in introduc-
lory perception texts, since normal eye movements otherwise compensate for the
temporary loss of information.

YAl of the cells in the optic nerve and almost all cells in vissal comex have an associated retinal
receptive field. Patterns of light hitting the retina outside of o cell’s receptive field hive noeffect on
the firing rute of that cell.

492 21. Visual Perception

As shown in Figure 21,14, the packing density of rods drops to zero at the
center of the fovea. Away from the fovea, the rod density first increases and then
decreases. One result of this is that there is no foveal vision when illumination
is very low, The lack of rods in the fovea can be demonstrated by observing a
night sky on a moonless night, well away from any city lights, Some stars will
be so dim that they will be visible if you look at at point in the sky slightly to the
side of the star, but they will disappear if you look directly at them. This occurs
because when vou look directly at these features, the image of the features falls
only on the cones in the retina, which are not sufficiently light sensitive to detect
the feature. Looking slightly to the side causes the image to fall on the more
light sensitive cones. Scotopic vision is also limited in acuity, in parl because
of the lower density of rods over much of the retina and in part because preater
paaling of signals from the rods oceurs in the retina in order to increase the light
sensitivity of the visual information passed back to the brain.

21.25 Motion

When reading about visual perception and looking at static figures on 4 printed
page, it is easy to forget that motion is pervasive in our visual experience. The
patterns of light that fall on the retina are constantly changing due to eye and body
motion and the movement of objects in the world. This section covers our ability
to detect visual motion. Section 21.3.4 describes how visual motion can be used
to determine geometric information about the environment. Section 21.4.3 deals
with the use of motion to guide our movement through the environment.

The detectability of motion in a particular pattern of light falling on the retina
is a complex function of speed, direction, pattern size, and contrast, The issue is
further complicated because simultaneous contrast effects occur for motion per-
ception in a manner similar to that observed in brightness perception. In the
extreme case of a single small patlern moving against a contrasting, homoge-
nous background, perceivable motion requires a rate of motion corresponding to
(.20, 3% second of visual angle. Motion of the same pattern moving against a
textured pattern is detectable at about a tenth this speed.

With this sensitivity to retinal motion, combined with the frequency and ve-
locity of saccadic eye movements, it is surprising that the world usually appears
stable and stationary when we view it. The vision system accomplishes this in
three ways. Contrast sensitivity is reduced during saccades, reducing the visual
cffects generated by these rapid changes in eye position. Between saccades, a
variety of sophisticated and complex mechanisms adjust eve position 1o compen-
sate for head and body motion and the motion of objects of interest in the world.
Finally, the visual system exploits information about the position of the eyes to

21.2. Visual Sensifivity 493

(a) b)

Figure 21.15. The aperture problem: (a) If a straight line or edge moves in such @ way
that itz end points are hidden, the visual information is not sufficient to detarmine the actual
maotion of the line, (b) 20 motion of a line s unambiguous i there are any cornars or other
distinctive markings on the fine,

assemble @ mosaic of small patches of high resolution imagery from multiple fix-
ations into a single, stable whole.

The motion of straight lines and edges is ambiguous if no endpoints or cor-
ners are visible, a phenomenon referred to as the aperture profien (Figure 21.15).
The aperture problem arises because the component of motion parallel to the line
or edge does not produce any visual changes. The geometry of the real world
is sufficiently complex that this rarely causes difficulties in practice, except for
intentional illusions such as barber poles, The simplified geometry and textur-
ing found in some computer graphics renderings, however, has the potential 1o
introduce inaccuracies in perceived motion,

Real-time computer graphics, film, and video would not be possible without
an important perceptual phenomena: discontinuous motion, in which a series of
static images are visible for discrete intervals in time and then move by discrete
intervals in space, can be nearly indistinguishable from continuous motion. The
effect is called apparent motion to highlight that the appearance of continuous
motion is an illusion.

Figure 21.16 illustrates the difference between continuous motion, which is
typical of the real world, and apparent motion, which is generated by almost all
dynamic image display devices. The motion plotted in Figure 21.16 (b) consists
of an average motion comparable to that shown in Figure 21,16 (a), modulated by
a high space-time frequency that accounts for the alternation between a stationary
pattern and one that moves discontinuously to a new location. Apparent percep-

494 21. Visual Perception

= - | |
§ g |
2 z
'S c |
|
time time |
{a) ib)

Figure 21.,16. (a) Continucus motion. (b) Discontinuous motion with the same average
velocity. Under soma circumstances, the perception of these two motion patterns may be
similar

tion of continuous motion occurs because the visual system is insensitive to the
high frequency component of the motion,

A compelling sense of apparent motion occurs when the rate at which indi-
vidual images appear is above about 10 He, as long as the positional changes
between successive images is not oo great. This rate is not fast enough, how-
ever, to produce a satisfying sense of continuous motion for moest image display
devices. Almost all such devices introduce brightness variation as one image 1s
switched to the next. In well 1it conditions, the human visual system is sensitive
to this varying brightness for rates of variations up to about 80 He. In lower light,
detectability is present up to about 40 Hz, When the rate of altenating brightness
is sufficiently high, flicker fusion occurs and the variation is no longer visible.

To produce a compelling sense of visual motion, an image display must there-
fore satisfy two separate constraints:

s [mages must be updated at 4 rate = 10 Hz,
o Any Hicker introduced in the process of updating images must occur at a
rate > 60-80 Hz.

One solution s to require that the image update rate be greater than or equal to
6080 Hz. In many situations, however, this is simply not possible. For computer
graphics displays, the frame computation time is often substantially greater than
12-15 msec. Transmission bandwidth and limitatons of older monitor technolo-
gies limit normal broadeast television to 25-30 images per second. {Some HDTV
formats operate at 60 images/sec.) Movies update images at 24 frames/second
due to exposure time reguirements and the mechanical difficulties of physically
maoving film any faster than that.

21.3. Spatial Visicn 495

Different display technologies solve this problem in different ways, Computer
displays refresh the djsplayed image al ~70-80 Hz, regardless of how ofien the
contents of the image change. The term frame rate 15 ambiguous for such displays,
since two values are required to characterize this display: refresh rafe, which
indicates the rate at which the image is redisplaved and frame updare rare, which
indicates the rate at which new images are generated for display, Standard non-
HDTYVY broadcast television uses a refresh rate of 60 Hz (NTSC, used in North
America and some other locations) or 50 He (PAL, used in most of the rest of
the world). The frame update rate is half the refresh rate. Insiead of displaying
each new image twice, the display is interfaced by dividing alternating horizontal
image lines into even and odd fields and aliernating the display of these even and
odd fields. Flicker is avoided in movies by using a mechanical shutter to blink
each frame of the film three times before moving o the next frame, producing a
refresh rate of 72 Hz while maintaining the frame update rate of 24 Hz,

The use of apparent motion to simulate continuous motion occasionally pro-
duces undesirable artifacts. Best known of these is the wagon whee! illnsion in
which the spokes of a rotating wheel appear to revolve in the opposite direction
from what would be expected given the translatiofal motion of the wheel. The
wagon wheel illusion is an example of temporal aliasing. Spokes, or other spa-
tially periodic patterns on a rotating disk, produce a temporally periodic signal
lor viewing locations that are fixed with respect to the center of the wheel or disk.
Fixed frame update rates have the effect of sampling this temporally periodic sig-
nal in ime. 1l the temporal frequency of the sampled patiern is oo high, under
sampling results in an aliased, lower temporal frequency appearing when the im-
age is displayed. Under some circumstances, this distortion of temporal frequency
causes a spatial distortion in which the wheel appears 1o move backwards. Wagon
wheel illusions are more likely to occur with movies than with video, since the
temporal sampling rate 15 lower.

Problems can also oecur when apparent motion imagery is converted from
one medium to another. This is of particular concern when 24 Hz movies are
transferred o video, Not only does a non-interlaced formal need o be translated
to an interlaced format, but there s no straightforward way 0 move from 24
frames per second to 50 or 60 fields per second. Some high-end display devices
have the ability 1o partially compensate for the artifacts introduced when film is
converted to video.

21.3 Spatial Vision

One of the critical operations performed by the visual system is the estimation of
geometric properties of the visible environment, since these are central (o deter-

496 21. Visual Perception

mining information about objects, locations, and events, Vision has sometimes
been described as {nverse aprics. to emphasize that one function of the visual sys-
tem is 1o invert the image formation process in order to determine the geometry,
materials, and lighting in the world that produced a particular patiern on light
on the retina. The central problem for a vision system is that properties of the
visible environment are confounded in the patterns of light imaged on the retina.
Brightness is a function of both illumination and reflectance, and can depend on
environmental properties across large regions of space due to the complexities of
light transport. Image locations of a projected environmental location at best can
be used 1o constrain the position of that location 1o a half-line. As a consequence,
it is rarely possible to uniquely determine the nature of the world that produced a
particular imaged pattern of light.

Determining surface lavour—ithe location and orientation of visible surfaces
in the environment—is thought to be a key siep in human vision. Most discus-
sions of how the vision system extracts information about surface layvout from the
patterns of light it receives divide the problem into a set of visuwal cues, with each
cue describing a particular visual pattern which can be used to infer properties
of surface layout along with'the needed rules of inference. Since surface layout
can rarely be determined accurately and unambiguously from vision alone, the
process of inferring surface layout vsoally requires additional, non-visual infor-
mation. This can come from other senses or assumptions about what is likely o
occur in the real world.

Visual cues are typically categorized into four categories, Ocularmotor cuies
involve information about the position and focus of the eyes. Disparity cues in-
volve information extracted from viewing the same surface point with two eyes,
beyond that available just from the positioning of the eyes. Motion cues provide
information about the world that arises from either the movement of the observer
or the movement of ohjects. Piciorial cues result from the process of projecting
3D surface shapes onto a 2D pattern of light that falls on the retina. This sec-
tion deals with the visual cues relevant to the extraction of geometric information
about individual points on surfaces. More general extraction of location and shape
information is covered in Section 21.4.

21.3.1 Frames of Reference and Measurement Scales

Descriptions of the location and orientation of points on a visible surface must be
done within the context of a particular frame of references that specifies the ori-
gin, orientation, and scaling of the coordinate system used in representing the ge-
ometric information. The human vision system uses multiple frames of reference,

21.3. Spatial Vision 497

partially because of the different sorts of information available from different vi-
sual cues and partly because of the different purposes to which the information
is put (Klatzky, 1998). Egoceniric representations are defined with respect o the
viewer's body. They can be subdivided into coordinate systems fixed to the eyes.
head. or body. Allocentric representations, also called exoceniric representations,
are defined with respect to something external to the viewer. Allocentric frames
of reference can be local o some configuration of objects in the environment or
can be globally defined in terms of distinctive locations, gravity, or geographic
properties.

The distance from the viewer to a particular visible location in the environ-
ment, expressed in an egocentric representation, is often referred to as depih in
the perception literature. Surface orientation can be represented in either egocen-
tric or allocentric coordinates. In egocentric representations of orientation, the
term sfant is used to refer to the angle between the line of sight to the point and
the surface normal at the point, while the term 1ir refers to the orientation of the
projection of the surface normal onto a plane perpendicular to the line of sight.

Distance and ortentation can be expressed in a variety of measurement scales,
Absolure deseriptions are specified using a standard that is not part of the sensed
information itself, These can be culturally defined standards (e.g, meters), or
standards relative to the viewer's body (e.g.. eve height, the width of one’s shoul-
ders). Relative descriptions relate one perceived geometnic property to another
(e.g.. point & is twice as far-away as point b). Ordinal descriptions are a special

Cua a | r | o | Requirernants for absolute depth
Accommodation ¥ | x| x | verylimited range

Binocular convergence % | x| x| limited range

Binocular disparity - | ® | % | limited range

Linear perspective, height | x | x | x | requires viewpoint height

in picture, horizon ratio
Familiar size X
Relative size -
Agrial perspective ?
Absolute motion parallax | 7
Relative motion parallax = | -
Texture gradients = L=
Shading -l x
Occlusion - - | %
Figure 21.17. Common visual cues for absoluta (a), relative (r), and ordinal (0) depth.

adaptation to local conditions
requires viewpoint velocity

MM M
Moo B M M

498 21. Visual Perception

case of relative measure in which the sign, but not the magnitude, of the relation
i5 all that is represented. Figure 21,17 provides a list of the most commonly con-
sidered visual cues, along with a characterization of the sorts of information they
can potentially provide.

21.3.2 Ocularmotor Cues

Ocularmotor information about depth results directly from the muscular control |
of the eyes. There are two distinet types of ocularmotor information. Accommo-
dation is the process by which the eve optically focuses at a particular distance,
Copvergence (often referred 1o as vergence) is the process by which the two eyes
are pointed towards the same point in three-dimensional space. Both accommo-
dation and convergence have the potential to provide absolute information about
depth.

Physiologically, focusing in the human eyve is accomplished by distorting the
shape of the lens at the front of the eye. The vision system can infer depth from
the amount of this distortion. Accommodation is a relatively weak cue to distance
and is ineffective beyond about 2 m. Most people have increasing difficultly in
focusing over a range of distances as they get beyond about 45 years old. For
them, accommodation becomes even less effective.

Those not familiar with the specifies of visual perception sometimes confuse
depth estimation from accommaodation with depth information arising out of the

Figure 21.18. Does the central square appear in front of the pattern of circles or is it seen
as appearing through a square hole in the pattern of circles? The only difference in the two
images is the sharpness of the adge between the ling and circle patterns (Marshall, Burbeck,
Araly, Aolland, and Martin (1999), used by permission), h

|

21.3. Spatial Vision 499

Figure 21.19. The vergence of the two eyes provides information about the distance to the
paint on which the eyes are fixated.

blur associated with limited depth-of-field in the eye. The accommodation depth
cue provides information about the distance to that portion of the visual field that
itis in focus. It does not depend on the degree to which other portions of the visual
ficld are out of focus, other than that blur is used by the visual system 1o adjust
focus. Depth-of-field does seem to provide a degree of ordinal depth information
{Figure 21,18), though this effect has received only limited investigation.

If two eyes fixate on the same point in space, trigonometry can be used to
determine the distance from the viewer Lo the viewed location (Figure 21.19). For
the simplest case, in which the point of interest is directly in front of the viewer,

ipd /2
= —1 21.5
tand ¢)

where = is the distance to a point in the world, ipd is the inferpupillary distance
indicating the distance between the eyes, and # is the vergence angle indicating
the orientation of the eyes relative to straight ahead. For small #, which is the case
for the geometric configuration of human eyes, tanf = & when # is expressed in
radians. Thus, differences in vergence angle specify differences in depth by the
following relationship:
Af = I—PE 2 i

2 Az
A @ — U in uniform steps, Az gets increasingly larger. This means that stereo
vision is less sensitive to changes in depth as the overall depth increases. Conver-
gence in fact only provides information on absolute depth for distances out to a
few meters. Beyond that, changes in distance produce changes in vergence angle
that are too small to be useful.

There is an interaction between accommodation and convergence in the hu-
man visual system: accommodation is used to help determine the appropriate

(21.6)

500 21. Visual Perception

vergence angle, while vergence angle is used to help set the focus distance. Nor-
mally, this helps the visual system when there is uncerainty s setting either ac-
commodation or vergence. However, sterengraphic computer displays break the
relationship between focus and convergence that occurs in the real world, leading
to a number of perceptual difficulties {Wann, Rushton, & Mon-Williams, 1995) .

21.3.3 Binocular Disparity

The vergence angle of the eyes when fixated on a common point in space i only
one of the ways that the visual system is able to determine depth from binocular
steren. A second mechanism involves a comparison of the retinal images in the
two eyes and does not require information about where the eyes are pointed. A
simple example demonstrates the effect. Hold your arm straight out in front of
you, with your thumb pointed up, Stare at your thumb and then close one eve.
Mow, simultancously open the closed eye and close the open eye. Your thumb will
appear to be more or less stationary, while the more distant surfaces seen behind
your thumb will appear to move from side to side (Figure 21.20). The change
in retinal position of points in the scene between the left and right eves is called
disparity.

The binocular disparity cue reguires that the vision system be able to match
the image of points in the world in one eyve with the imaged locations of those
points in the other eye, a process referred to as the correspondence problem. This
is a relatively complicated process and is only partially understood. Once cor-
respondences have been established, the relative positions on which particular

(left eye image) {right eye image)

Figure 21.20. Binocular disparity. The view from the left and right eyes shows an offset for
surface points at depths different from the point of fixation, Photos by Petar Shirlay

21.3. Spatial Vision 501

——
s Y nearer paint

el e |
[K 71 | more distant point
I crossatl uncrossed l'. . \“.

disparity disparity LY
i I Pa=N
! ! __{ P fixation paint
-

Figure 21.21. Mear the line of sight, surface paints nearer than the fixation point produce
disparities in the opposite direction from those associated with surface points more distant
than the fixation point.

points in the world project onto the left and right retinas indicate whether the
points are closer than or farther away than the point of fixation. Crossed disparity
occurs when the corresponding points are displaced outward relative to the fovea
and indicates that the surface point is closer than the point of fixation. Uncrossed
disparity occurs when the corresponding points are displaced inward relative to
the fovea and indicates that the surface point is farther away than the point of
fixation (Figure 21.21).* Binocular disparity is a relative depth cue. but it can
provide information about absolute depth when scaled by convergence. Equation
21.5 applies to binocular disparity as well as binocular convergence. As with con-
vergence, the sensitivity of binocular disparity to changes in depth decreases with
depih.

21.3.4 Motion Cues

Relative motion between the eves and visible surfaces will produce changes in the
image of those surfaces on the retina, Three-dimensional relative motion between
the eye and a surface point produces two-dimensional motion of the projection of
the surface point on the retina. This retinal motion is given the name opiic flow.
Optic flow serves as the basis for several types of depth cues. In addition, optic
flow can be used to determine information about how a person is moving in the
world and whether or not a collision is imminent {Section 21.4.3),

If a person moves to the side while continuing to fixate on some surface point,
then optic flow provides information about depth similar to stereo disparity. This

Wechnically, crossed and uncrossed disparities indicate that the surfuce point genertting the dis-
purity is closer W or forther away from the hompter. The horopter 1= not a fixed distance wway from
the eyes but mther it is o curved surface passing through the point of fixation,

Figure 21.23. Discon-
tinuities in optic tow sig-
nal surface boundaries, In
many cases, the sign of the
depth change (i.e., the or-
dingl depth) can be deter-
mined.

502 21. Visual Perception

(&) {b)

Figure 21.22. (a) Motion parallax generated by sideways movement 1o the right while
locking at an extended ground plane. (b} The same motion, with eye tracking of the fixation

point.

is referred o as motion parallax, For other surface points that project to reti-
nal locations near the fixation point, zero optic flow indicates a depth equivalent
to the fixation point; flow in the opposite direction to head translation indicates
nearer points, equivalent to crossed disparity; and flow in the same direction as
head translation indicates farther points, equivalent to uncrossed disparity (Fig-
ure 21.22). Motion parallax is a powerful cue to relative depth. In principle,
motion parallax can provide absolute depth information if the visual system has
aceess o information about the velocity of head motion. In practice, motion par-
allax appears at best to be a weak cue for absolute depth.

In addition 1o egocentric depth information due to motion parallax, visual
motion can also provide information about the three-dimensional shape of ob-
jects moving relative to the viewer. In the perception literature, this is known as
the kinetic depth effect. In computer vision, it is referred to as siruciure-from-
maiion. The kinetic depth effect presumes that one component of object motion
is rofation in deptfl, meaning that there is a component of rotation around an axis
perpendicular to the line of sight.

Optic flow can also provide information about the shape and location of sur-
face boundaries, as shown in Figure 21.23. Spatial discontinuities in optic flow
almost always either correspond to depth discontinuities or result from indepen-
dently moving objects. Simple comparisons of the magnitude of optic Aow are
insufficient to determine the sign of depth changes, except in the special case of
a viewer moving through an otherwise static world. Even when independently
moving objects are present, however, the sign of the change in depth across sur-
face boundaries can often be determined by other means. Motion often changes
the portion of the more distant surface visible at surface boundaries. The appear-
ance (accretion) or disappearance (deletion) of surface texture occurs because the
nearer, occluding surface progressively uncovers or covers portions of the more

21.3. Spatial Vision 503

distant, oecluded surface. Comparisons of the motion of surface texture o either
side of a boundary can also be used to infer ordinal depth, even in the absence
of aceretion or deletion of the texture. Discontinuities in optic flow and accre-
ton/deletion of surface texture are referred to as dvnamic occlusion cues and are
another powerful source of visual information about the spatial structure of the
environment.

The speed that a viewer is traveling relative 1o points in the world cannot be
determined from visual motion alone (see Section 21,4.3). Despite this limitation,
it is possible to use visual information to determine the time it will take to reach a
visible point in the world even when speed cannot be determined. When velocity
is constant, fime-ro-contact (often referred o as time-ro-collision) is given by the
retinal size of an entity wowards which the observer is moving, divided by the rate
at which that image size is increasing.” In the biological vision literature, this is
often called the 7 furction (Lee & Reddish, 1981). If distance information to the
structure in the world on which the ime-to-collision estimate is based is available,
then this can be used o determine speed,

21.3.5 Pictorial Cues

An image can contain much information about the spatial structure of the world
from which it arose, even in the absence of hinocular stereo or motion. As evi-
dence for this, note that the world still appears three-dimensional even if we close
one eye, hold our head stationary, and nothing moves in the environment. (As
discussed in Section 21.5, the situation is more complicated in the case of pho-
tographs and other displayed images.) There are three classes of such pictorial
depth cues. The best known of these involve linear perspective. There are also
a number of gcclusion cues that provide information about ordinal depth even in
the absence of perspective. Finally, illuminarion cues involving shading, shadows
and interreflections, and aerial perspective also provide visual information about
spatial layout.

The term linear perspective is often used to refer to properties of images in-
volving object size in the image scaled by distance, the convergence of parallel
lines, the ground plane extending to a visible horizon, and the relationship be-
tween the distance to objects on the ground plane and the image location of those
objects relative to the horizon (Figure 21.24). More formally, linear perspective
cues are those visual cues which exploit the fact that under perspective projection,
the image location onto which points in the world are projected is scaled by L

*The terms time-to-callision snd time-1o-contact are misleading. since contagt will only occur if
the viewer's trajectory actually passes through or near the entity under view,

Figure 21.24. The
classical linear perspective
effects incluge object size
scaled by distance, the con-
vergence of parallel lines,
the ground plane extending
10 a visible horizon, and po-
sition on the ground plana
relative to the horizon. Im-
age courtesy Sam Pullara.

504 21. Visual Perception

=:::J:ﬂ"""'"""""""'"'"""""""""""""":3"

=
TR d=heotd

- RS

Figure 21.25. Absolute distance to locations on the ground plane can be determined based
on declination angle from the horizon and eye height.

where = is the distance from the point of projection to the point in the environ-
ment. Direct consequences of this relationship are that points that are farther away
are projected to points closer to the center of the image (convergence of parallel
lines) and that the spacing between the image of points in the world decreases for
more distant world points (object size in the image is scaled by distance)® The
fact that the image of an infinite Aat surface in the world ends at 4 finite horizon
is explained by examining the perspective projection eguation as z — o,

With the exception of size-related effects described in Section 21.4.2, most
pictorial depth cues involving linear perspective depend on objects of interest be-
ing in contact with & ground plane. In effect, these cues estimate not the distance
to the objects but, instead, the distance to the contact point on the ground plane.
Assuming observer and object are both on top of a horizontal ground plane, then
locations on the ground plane lower in the view will be close, Figure 21.25 illus-
trates this effect quantitatively, For a viewpoint b above the ground and an angle
of declination & berween the horizon and a point of interest on the ground, the
point in question is a distance o = ficot & from the point at which the observer
is standing, The angle of declination provides relative depth information for arbi-
trary fixed viewpoints and can provide absolute depth when scaling by eye height
ih)is possible.

While the humnan visual system almost certainly makes use of angle of decli-
nation as a depth cue, the exact mechanisms wsed o acquire the needed informa-
tion are not ¢lear. The angle # could be obtained relative to either gravity or the
visible horizon, There is some evidence that both are used in human vision, Eye
height i could be based on posture, visually determined by looking at the ground
at one’s feet, or learned by experience and presumed to be constant, While a

"The actual mathematics for analyzing the specifics of biological vision are different, since oyves
are oot well approximated by the planar projection formulation wsed i comparter graphics and mest
uther imaging applications.

21.3. Spatial Vision 505

s ! T T U A\ LT e RN

Figure 21.26, Shadows can Indirectly function as a depth cue by associating the depth of
an object with & location on the ground plane (after Kerstan, Mamassian, and Knill (1887)).

number of researchers have investigated this issue, if and how these values are
determined is not yet known with certainty,

Shadows provide a variety of types of information about three-dimensional
spatial layout. Afrached shadows indicate that an object is in contact with another
surface, often consisting of the ground plane. Detached shadows indicate that
an object is close to some surface. but not in contact with that surface. Shadows
can serve as an indirect depth cue by causing an object to appear at the depth of
the location of the shadow on the ground plane (Yonas, Goldsmith, & Hallstrom,
1978). When utilizing this cue, the visual system seems to make the assumption
that light is coming from directly above (Figure 21.26).

Vision provides information about surface orientation as well as distance. It
is convenient to represent visually determined surface orientation in terms of fifr,
defined as the orientation in the image of the projection of the surface normal, and
slant, defined as the angle between the surface normal and the line of sight,

A visible surface horizon can be used to find the orientation of an {effectively
infinite) surface relative to the viewer. Determining tilt is straightforward, since
the tilt of the surface is the orientation of the visible horizon. Slant can be re-
covered as well, since the lines of sight from the eye point to the horizon define
a plane parallel to the surface. In many situations, either the surface horizon is
not visible or the surface is small enough that its far edge does not correspond
to an actual horizon. In such cases, visible texture can still be used to estimate
orientation,

In the context of perception, the term rexiure refers to visual patterns consisi-
ing of sub-patterns replicated over a surface. The sub-patierns and their distri-
bution can be fixed and regular, as for a checkerboard, or consistent in a more
statistical sense, as in the view of a grassy field,” When a textured surface is
viewed from an obligue angle. the projecied view of the texture is distorted rela-
tive to the actual markings on the surface. Two guite distinct types of distortions
cccur (Knill, 1998}, both affected by the amount of slant. The position and size

"In computer graphics, the term fextire has 8 different meaning, referring (o any image thit is
opplied to o surfoce as part of the rendering process.

508 21, Visual Perception

Figure 21.27, Texture cues for slant, (a) Mear surface exhibiting compression and fexture
gradient; (b) distant surface exhibiting only compression, (c) vanability in appearance of near
surface with regular geomelric variability.

of exture ¢lements are subject to the linear perspective effects described above.
This produces a texture gradient (Gibson, 1950) due to both element size and
spacing decreasing with distance (Figure 21.27(a)). Both the image of individual
texture elements and the distribution of elements are foreshortened under obligue
viewing (Figure 21.27(b)). This produces a compression in the direction of tlt
For example, an obliquely viewed circle appears as an ellipse, with the ratio of the
minor to major axes equal to the cosine of the slant. Note that foreshortening it-
self is not a result of linear perspective, though in practice both linear perspective
and foreshortening provide information about slant.®

For texture gradients to serve as a cue to surface slant, the average size and
spacing of rexture elements must be constant over the textured surface. If spa-
tial variability in size and spacing in the image is not due in its entirely to the
projection process, then attempts 1o invert the effects of projection will produce
incorrect inferences about surface orientation. Likewise, the foreshortening cue
fails if the shape of texture elements is not isotropic, since then asymmetric tex-
ture element image shapes would occur in situations not associated with oblique
viewing. These are examples of the assumptions often required in order for spa-
tial visual cues 1o be effective. Such assumptions are reasonable to the degree that
they reflect commonly occurring properties of the world.

Shading also provides information about surface shape (Figure 21.28). The
brightness of viewed points on a surface depends on the surface reflectance and
the orientation of the surface with respect to directional light sources and the
observation point. When the relative position of an object, viewing direction,
and illumination direction remain fixed, changes in brightness over a constant
reflectance surface are indications of changes in the orientation of the surface of

A third form of visual distortion occurs when surfaces with distinet 31 surface relief are viewed
obliguely (Leung & Malik, 1997), as shown in Figure 21.27(c). Nathing is cumrently know about if or
haow thiz effect might be uged by the human vision system o determine slant.

.

21.3. Spatial Vision 507

{g) {b)

Figure 21.28. Shape-from-shading. The images in fa) and {b) appear to have differant
30 shapes because of differences in the rate of change of brightness over their surfaces,

éﬁwﬁ.ﬁﬁ-ﬁ

it e
* r..
Srgreiieieiee *

; 'ffti!{.ﬂ&%t’-! R
AR AR

-

Figure 21.29. Shading can generate a strong perception of three-dimensional shape. In
this figure, the effect is stronger if you view the image from several meters away Lsing one
gye. It becomes yet stronger if You place a piece of cardboard in front of the figure with a

hole cut out slightly smaller than tha picture (see Section 21.5). Figure courtesy of Albart
¥onas. (See also Color Plate XX\

508 21. Visual Percaption
_,T i L
B X
arrow fork

(a) (b)

Figure 21.30. (a) Junctions provide information about occlugion and the convexity or con-
cavity of corners. (b) Common junction types for planar surface objects.

the object. Shape-from-shading is the process of recovering surface shape from
these variations in observed brightness. It is almost never possible to recover the
actual orientation of surfaces from shading alone, though shading can ofien be
combined with other cues to provide an effective indication of surface shape. For
surfaces with fine-scale geometric variability, shading can provide a compelling
three-dimensional appearance, even for an image rendered on a two-dimensional
surface (Figure 21.29),

There are a number of pictorial cues that yield ordinal information about
depth, without directly indicating actual distance. In line drawings, different types
of junctions provide constraints on the 3D geometry that could have generated the
drawing (Figure 21.30). Many of these effects occur in more natural images as
well. Most perceptually effective of the junction cues are T-juncrions, which are
strong indicators that the surface opposite the stem of the T is occluding at least
one more distant surface. T-junctions often generate a sense of amodal comple-
fion, in which one surface is seen to continue behind a nearer, occluding surface
(Figure 21.31).

Atmospheric effects cause visual changes that can provide information about
depth, particularly outdoors over long distances. Leonardo da Vinci was the first

Figure 21.31. Tjunctions cause the left disk to appear to be continuing behind the rectangle,
while the right disk appears in front of the rectangle which is seen to continue behind the disk,

21.4. Objects, Locations, and Events 509

to describe aerial perspective (also called atmospheric perspective), in which
scattering reduces the contrast of distant portions of the scene and causes them
to appear more bluish than if they were nearer (da Vinci, 1970) (see Color Plate
XX). Aerial perspective is predominately a relative depth cue, though there is
some speculation that it may affect perception of absolute distance as well. While
many people believe that more distant objects look blurrier due to armospheric
effects, atmospheric scattering actually causes little blur.

21.4 QObjects, Locations, and Events

While there is fairly wide agreement among current vision scientists that the pur-
pose of vision is to extract information about objects, locations, and events, there
is little consensus on the key features of what information is extracted, how it is
extracted, or how the information is used to perform tasks, Significant contro-
versies exist about the nature of object recognition and the potential interactions
between object recognition and other aspects of perception. Most of what we
know about location involves low-level spatial vision, not issues associated with
spatial relationships between complex objects or the visual processes required to
navigate in complex environments, We know a fair amount about how people
perceive their speed and heading as they move through the world, but have only
a limited understanding of actual event perception. Visual attention involves as-
pects of the perception of ohjects, locations, and events. While there is much data
about the phenomenology of visual attention for relatively simple and well con-
trolled stimuli, we know much less about how visual attention serves high-level

perceptual goals,

21.4.1 Object Recognition

Object recognition involves segregating an image into constituent parts corre-
sponding to distinct physical entities and determining the identity of those entities,
Figure 21,32 illustrates a few of the complexities associated with this process. We
have little difficulty recognizing that the image on the left is some sort of vehi-
cle, even though we have never before seen this particular view of a vehicle nor
do most of us typically associate vehicles with this context. The image on the
right is less easily recognizable until the page is turned upside down, indicating
an orientational preference in human object recognition,

Object recognition is thought to involve two, fairly distinct steps. The first
step organizes the visual field into groupings likely to correspond to objects and

510 21. Visual Percaption

(a) (b}

Figure 21.32. The complexities of object recognition, (a) We recognize a vehicle-like object
even though we have likely never saan this particular view of a vehicle befora. (b) The image
is hard to recognize based on & quick view. It becomes much easier to recognize i the book
is turned upside down,

surfaces, These grouping processes are very powerful (see Figure 21.33), though
there is little or no conscious awareness of the low-level image features that gener-
ate the grouping effect.” Grouping is based on the complex interaction of proxim-
ity, similarities in the brightness, color, shape. and orientation of primitive struc-
tures in the image, common motion, and a variety of more complex relationships.

The second step in ohject recognition is to interpret groupings as identified
objects. A computational analysis suggests that there are a number of distinctly

(a) (b}

Figure 21.33. Images are perceptually organized into groupings based on a complex set
of similarity and organizational criteria. (a) Similarity in brightness results in four horizontsl
groupings. (b) Proximity resulting In three vertical groupings.

“The mosl common form of visual camouflage involves adding visual wexiures thar fool the per-
cepiunl grouping processes so that the view of the world cannot be organized in a way that separates
out the phject being camouflaged.

21.4. Objects, Locations, and Events 511

template

il
e

Figure 21.34, Template matching. The bright spot In the right iImage Indicates the best
match location to the template in the left image. Image courtesy Nafional Archives and
Records Administration.

different ways in which an object can be identified. The perceptual data is unclear
as to which of these are actually used in human vision, Object recognition requires
that the vision system have available to it descriptions of each class of object
sufficient to discriminate each class from all others. Theories of object recognition
differ in the nature of the information describing each class and the mechanisms
used to match these descriptions to actual views of the world.

Three general types of descriptions are possible. Templates represent object
classes in terms of prototypical views of objects in each class. Figure 21.34 shows
a simple example. Structural descriptions represent object classes in terms of dis-
tinctive features of each class likely to be easily detected in views of the object,
along with information about the geometric relationships between the features.
Structural descriptions can either be represented in 2D or 3D. For 2D models
of objects types, there must be a separate description for each distinctly differ-
ent potential view of the object. For 3D models, two distinct forms of matching
strategies are possible. In one, the three-dimensional structure of the viewed ob-
ject is determined prior to classification using whatever spatial cues are available
and then this 3D description of the view is matched to 3D prototypes of known
objects. The other possibility is that some mechanism allows the determination
of the crientation of the yet-to-be identified object under view. This orientation
information is vsed to rotate and project potential 3D descriptions in a way that
allows a 2D matching of the description and the viewed object. Finally, the last
option for describing the properties of object classes involves invariant feaiures
which describe classes of objects in terms of more generic geometric properties,
particularly those that are likely be be insensitive to different views of the object.

21.4.2 Size and Distance

In the absence of more definitive information about depth, objects which project
onto a larger area of the retina are seen as closer compared with objects which

512 21. Visual Perception

Figure 21.35. Left. perspective and familiar size cues are consistent. Right: perspective
and tamiliar size cues are inconsistent. Figure by Pater Shidey, Scolf Kuhl, and J Ovlan
Lacewsil.

project to a smaller retinal area, an effect called relarive size. A more powerful
cue involves familiar size, which can provide information for absolute distance
1o recognizable objects of known size. The strength of familiar size as a depth
cue can be seen in illusions such as Figure 21.35, in which it is put in conflict
with ground-plane, perspective-based depth cues. Familiar size is one part of the
size-disrance relationship, relating the physical size of an object, the optical size
of the same object projected onto the retina, and the distance of the object from
the eve (Figure 21.36),

When objects are sitting on top of a flat ground plane, additional sources for
depth information become available, particularly when the horizon is either vis-

Flgure 21.36. The size-distance relationship allows the distance to objects of known size
to be determined based on the visual angle sublended by the object, Likewise, the size of
an object at a know distance can be determined based on the visual angle subtended by the

object.

21.4. Objects, Lecations, and Events 513

P — T
| ¥ wiewpoint helght |
| @ object height | |

I . |

L.

(&) ib)

Figure 21.37. (a) The horlzon ratio can be used to determine depth by comparing the visibla
portion of an object below the horizon to the total vertical visible extent of the object. (b) A
real-world example

ible or can be derived from other perspective information. The angle of dech-
nation 1o the contact point on the ground is a relative depth cue and provides
absolute egocentric distance when scaled by eye height, as previously shown in
Figure 21.25. The horizon ratio, in which the total visible height of an object
is compared with the visible extent of that portion of the object appearing below
the horizon, can be used to determine the actual size of objects, even when the
distance to the objects is not known (Figure 21.37), Underlying the honzon ratio
is the fact that for a flat ground plane, the line of sight 1o the horizon intersects
objects at a position that is exactly an eye height above the ground.

(&) [(e]]

Figure 21.38. (&) Size constancy makes hands posilioned at different distances from the
eye appear to be nearly the same size for real-world viewing, aven though the retinal sizes
are quite differant. (b) The effact is less strong when ane hand is partially occluded by the
other, particularly when one eye is closed. Figure by Peter Shirtey and Pal Mouiis.

Figure 21.38, Shape
constancy—ihe table looks
rectanguiar even though its
shape in the image is an ir-
regular four sided polygon,

514 21. Visual Perception

The human visual system is sufficiently able to determine the absolute size of
most viewed objects; our perception of size is dominated by the the actual physi-
cal size, and we have almost no conscious awareness of the corresponding retinal
size of objects. This is similar to lightness constancy, discussed earlier, in that
our perception is dominated by inferred properties of the world, not the low level
features actually sensed by photoreceptors in the retina. Gregory (1997) describes
a simple example of size constancy. Hold vour two hands out in front of you, one
at arms length and the other at half that distance away from you (Figure 21.38(a)).
Your two hands will look almost the same size, even though the retinal sizes differ
by a factor of two. The effect is much less strong if the nearer hand partially oc-
cludes the more distant hand, particularly if you close one eye (Figure 21.38(h)),
The visual system also exhibits shape constancy, where the perception of geomet-
ric structure is close to actual object geometry than might be expected given the
distortions of the retinal image due to perspective (Figure 21.39).

21.4.3 Events

Most aspects of event perception are bevond the scope of this chapter, since they
involve complex non-visual cognitive processes. Three types of event perception
are primarily visual, however, and are also of clear relevance to computer graph-
ics. Vision is capable of providing information about how a person is moving in
the world, the existence of independently moving objects in the world, and the
potential for collisions either due to observer motion or due to objects moving
towards the observer.

Vision can be used to determine rotation and the direction of translation rel-
ative to the environment. The simplest case involves movement towards a flat
surface oriented perpendicularly to the line of sight. Presuming that there is suffi-
cient surface texture to enable the recovery of optic flow, the flow field will form
a symmetric pattern as shown in Figure 21.40(a). The location in the field of view
of the focus of expansion of the flow field will have an associated line of sight
corresponding to the direction of translation. While optic flow can be used to vi-
sually determine the direction of motion, it does not contain enough information
1o determine speed. To see this, consider the sitwation in which the world is made
twice as large and the viewer moves twice as fast. The decrease in the magnitude
of flow values due to the doubling of distances is exactly compensated for by the
increase in the magnitude of flow values due to the doubling of velocity, resulting
in an identical flow field.

Figure 21.40(b) shows the optic flow field resulting from the viewer {or more
accurately, the viewer's eves) rotating around the vertical axis, Unlike the situa-

21.4. Objects, Locations, and Events

515

e T O R st el Al I o
NG R | | nEEEREEEEREas e | | S e T
SO R % __________________
S U I R S B I
SET RS e e 2 R et
S N R S | ke i L e T i Tl
o | |I "'\ bt " i g+ o S g Y Sl - - - — - -
e e | e

¥ Y R s S
(a) (B))

Figure 21.40. (a) Movement towards & flat, textured surface produces an expanding flow
field, with the focus of expansion indicating the line of sight cormasponding to the direction
of motion. (b) The flow field resulting from rotation around the vertical axis while viewing
a fiat surface oriented perpendicularly to tha line of sight. (c) The flow field resulting from
transiation parallel to a fiat, extured surface.

tion with respect to translational motion, optic flow provides sutficient informa-
tion to determine both the axis of rotation and the (angular) speed of rotation. The
practical problem in exploiting this is that the flow resulting from pure rotational
motion around an axis perpendicular to the line of sight is quite similar to the
flow resulting from pure translation in the direction that is perpendicular to both
the line of sight and this rotational axis, making it difficult to visually discriminate
between the two very different types of motion (Figure 21.40(c)). Figure 21.41
shows the optical flow patterns generated by movement through a more realistic
environment.

If a viewer is completely stationary, visual detection of moving objects is easy,
since such objects will be associated with the only non-zero optic flow in the field

"_'_-':.'_ s W, m m ¥ _'_F_.-:-'n'; .
P . FoE s e
- = a- x> & e
T & & R F AT R R B T T
et SR S S | L T e T

T U R T T N T T T i
2000 T TRARNS,
Figure 21.41. The oplic flow generated by moving through an otherwise static envirenment
provides information about both tha motion ralative to the environment and the distances to

points in the environment. In this case, the direction of view is depressed from the horizon,
but as indicated by the focus of expansion, the motion is parallel to the ground plane,

Figure 21.42. Visual
detection of moving objects
from a moving observation
point requires recognizing
patterns in the optic flow
that cannot be associatad
with motion through a static
anvironment.

516 21, Visual Perception

of view. The sitwation is considerably more complicated when the observer is
moving, since the visual field will be dominated by non-zero flow, most or all of
which is due to relative motion between the observer and the static environment
(Thompson & Pong, 1990). In such cases, the visual system must be sensitive
1o patterns in the optic flow field that are inconsistent with flow fields associated
with observer movement relative to a static environment (Figure 21.42),

Section 21.3.4 described how vision can be used to determine time to contact
with a point in the environment even when the speed of motion is not known.
Assuming a viewer moving with a straight, constant-speed trajectory and no in-
dependently moving objects in the world, contact will be made with whatever
surface is in the direction of the line of sight corresponding to the focus of expan-
sion at a time indicated by the r relationship. An independently moving object
complicate the matter of determining if a collision will in fact occur. Sailors use
a method for detecting potential collisions that may also be employed in the hu-
man visual system: for non-accelerating straight-line motion, collisions will occur
with objects that are visually expanding but otherwise remain visually stationary
in the egocentric frame of reference,

One form of more complex event perception merits discussion here, since it 15
50 important in interactive computer graphics. People are particularly sensitive to
motion corresponding to human movement. Locomotion can be recognized when
the only features visible are lights on the walker’'s joints (Johansson, 1973). Such
maoving light displays are often even sufficient to recognize properties such as the
sex of the walker and the weight of the load that the walker may be carrving.
In computer graphics renderings, viewers will notice even small inaccuracies in
animated characters, particularly if they are intended to mimic human motion.

The term visual attention covers a range of phenomenoen from where we point
our eyes o cognitive effects involving what we notice in a complex scene and how

@) () (c)

Figure 21.43. In (a) and (b), visual attention is quickly drawn to the itam of diterent shape
or color. In (c), seguential search appears to be necessary in order 1o find the one itam that
differs in both shape and color,

—

21.5. Picture Perception 517

we interpret what we notice (Pashler, 1998). Figure 21.43 provides an example of
how attentional processes affect vision, even for very simple images. In the left
two panels, the one pattern differing in shape or color from the rest immediately
“pops out” and is easily noticed. In the panel on the right, the one pattern differ-
ing in both shape and color is harder to find. The reason for this is that the visual
system can do a parallel search for items distinguished by individoal properties,
but requires more cognitive, sequential search when looking for items that are in-
dicated by the simultaneous presence of two distinguishing features. Graphically
based human-computer interfaces should be (but often are not!) designed with an
understanding of how to take advantage of visual attention processes in people so
as to communicate important information quickly and effectively.

21.5 Picture Perception

So far, this chapter has dealt with the visual perception that occurs when the world
is directly imaged by the human eye. When we view the results of computer
graphics, of course, we are looking at rendered images and not the real world.
This has important perceptual implications. In principle, it should be possible to
generate computer graphics that appears indistinguishable from the real world, at
least for monocular viewing without either object or observer motion. Imagine
looking out at the world through a glass window. Now, consider coloring each
point on the window to exactly match the color of the world originally seen at
that point."" The light reaching the eye is unchanged by this operation, meaning
that perception should be the same whether the painted glass is viewed or the
real world is viewed through the window. The goal of computer graphics can be
thought of as producing the colored window without actually having the equiva-
lent real-world view available.

The problem for computer graphics and other visual arts is that we can't in
practice match a view of the real world by coloring a flat surface. The brightness
and dynamic range of light in the real world is impossible to recreate using any
current display technology. Resolution of rendered images is also often less that
the finest detail perceivable by human vision. Lightness and color constancy are
much less apparent in pictures than in the real world, likely because the visual
system attempts to compensate for variability in the brightness and color of the
illumination based on the ambient illumination in the viewing environment rather
than the illumination associated with the rendered image. This is why the real-

0This idea was first described by the painter Leon Battista Alberti in 1435 and is now known as
Alberti's Window. It is closely related to the camera abscura.

!I

518 21. Visual Perception

istic appearance of color in photographs depends on film color balanced for the
nature of the light source present when the photograph was taken and why real-
istic color in video requires a white-balancing step. While much is known about
how limitations in resolution, brightness, and dynamic range affect the detectabil-
ity of simple patterns. almost nothing is known about how these display properties
affect spatial vision or object identification.

We have a better understanding of other aspects of this problem, which psy-
chologists refer to as the perception of pictorial space (S. Rogers, 1995), One
difference between viewing images and viewing the real world is that accommo-
dation, binocular stereo, motion parallax, and perhaps other depth cues may indi-
cate that the surface under view is much different that the distances in the world
that it is intended to represent. The depths that are seen in such a situation tend
to be somewhere between the depths indicated by the pictorial cues in the image
and the distance to the image itself. When looking at a photograph or computer
display, this often results in a sense of scale smaller than intended. On the other
hand, seeing a movie in a big-screen theater produces a more compelling sense of
spaciousness than does seeing the same movie on television, even if the distance
to the TV is such that the visual angles are the same, since the movie screen is
farther away.

Computer graphics rendered using perspective projection has a viewpoint,
specified as a position and direction in model space, and a view frustum, which
specifies the horizontal and vertical field of view and several other aspects of the
viewing transform. If the rendered image is not viewed from the correct location,
the visual angles to the borders of the image will not match the frustum vsed in
creating the image. All visual angles within the image will be distorted as well,
causing a distortion in all of the pictorial depth and orientation cues based on
linear perspective. This effect occurs frequently in practice, when a viewer is po-
sitioned either too close or too far away from a photograph or display surface. If
the viewer is too close, the perspective cues for depth will be compressed, and the
cues for surface slant will indicate that the surface is closer to perpendicular to the
line of sight than is actually the case. The situation is reversed if the viewer is too
far from the photograph or screen. The situation is even more complicated if the
line of sight does not go through the center of the viewing area. as is commonly
the case in a wide variety of viewing situations.

The human visual system is able to partially compensate for perspective dis-
tortions arising from viewing an image at the wrong location, which is why we
are able to sit in different seats at a movie theater and experience a similar sense
of the depicted space. When controlling viewing position is particularly impor-
tant, viewing fubes can be used. These are appropriately sized tubes, mounted

21.5. Picture Perception 519

in a fixed position relative to the display, and through which the viewer sees the
display. The viewing tube constrains the observation point to the (hopefully) cor-
rect position. Viewing tubes are also quite effective at reducing the conflict in
depth information between the pictorial cues in the image and the actual display
surface. They eliminate both stereo and motion parallax, which if present would
correspond to the display surface, not the rendered view. If they are small enough
in diameter, they also reduce other cues to the location of the display surface by
hiding the picture frame or edge of the display device. Exotic visually immersive
display devices such as head-mounted displays (HMDs) go further in attempting
to hide visual cues to the position of the display surface while adding binocu-
lar stereo and motion parallax consistent with the geometry of the world being
rendered,

Erik Reinhard

22

Tone Reproduction

As discussed in Chapter 21, the human visual system adapts to a wide range of
viewing conditions. Under normal viewing, we may discern a range of around 4
to 5 log units of illumination, i.e., the ratio between brightest and darkest areas
where we can see detail may be as large as 100, 000 : 1. Through adaptation
processes, we may adapt to an even larger range of illumination. We call images
that are matched to the capabilities of the human visual system high dynamic
range.

Visual simulations routinely produce images with a high dynamic range
{Ward Larson & Shakespeare, 1998). Recent developments in image-capturing
technigues allow multple exposures to be aligned and recombined into a single
high dynamic range image (Debevee & Malik, 1997). Multiple exposure tech-
nigues are also available for video, In additon, we expect future hardware o be
able to photograph or hlm high dynamic range scenes directly. In general, we
may think of each pixel as a triplet of three floating point numbers,

As it is becoming easier to create high dynamic range imagery, the need w
display such data is rapidly increasing. Unfortunately, most current display de-
vices, monitors and printers, are only capable of displaying around 2 log units
of dynamic range. We consider such devices to be of low dynamic range. Most
images in existence today are represented with a byte-per-pixel-per-color chan-
nel, which is matched to current display devices, rather than to the scenes they
!'E[!TEHIETIL

Typically, low dynamic range images are not able to represent scenes with-
out loss of information. A common example is an indoor room with an out-

521

S22 22. Tone Reproduction

Figure 22.1. With conventional photography, some parts of the scene may be under- or
over-exposad, To visualize the snooker table, the view through the window is burned out in
tha laft image. On fha other hand, the snooker table will be too dark if the outdoor part of this
scene is properly exposed. Compare with Figura 22.2, which shows a high dynamic range
image preparad for display using a tone reproduction algorithm.

door area visible through the window, Humans are easily able to see details of
both the indoor part and the outside part. A conventional photograph typically
does not caprure this full range of information—the photographer has 1o choose
whether the indoor or the outdoor part of the scene is properly exposed (see Fig-
urg 22.1). These decisions may be avoided by using high dynamic range imaging
and preparing these images for display using technigues described in this chapter
(see Figure 22.2).

There are two strategies available o display high dynamic range images. First,
we may develop display devices which
can directly accommodate a high dy-
namic range (Seetzen. Whitehead, &
Ward, 2003; Seetzen et al., 2004). Sec-
ond, we may prepare high dynamic
range images for display on low dy-
namic range display devices (Upstill,
[985). This is currently the more com-
mon approach and the topic of this
chapter. Although we foresee that high

Figure 22.2.

A high dynamic range im-

age tonemapped for display using a recent
tone reproduction operator (Reinhard & Da-

viin, 2005). In this Image, both the indoor
part and the view through the window are

properly exposed.

dynamic range display devices will be-
come widely vsed in the (near) future,
the need to compress the dynamic range
of an image may diminish, but will not
disappear. In particular, printed media

such as this book are by their very nature low dynamic range.

Compressing the range of values of an image for the purpose of display on

a low dynamic range display device is called tonemapping or tone reproduction.

s

523

Figure 22.3. Linear scaling of high dynamic range images to fit & given display device may
cause significant detail to be lost (left and middie), The left image s linearly scaled. In the
middla image high values are clamped. For comparison, the right image is tonemapped,
allowing details in both bright and dark regions to be visible,

A simple compression function would be to normalize an image (see Figure 22,3
{left)). This constitutes a linear scaling which tends to be sufficient only if the dy-
namic range of the image is only marginally higher than the dynamic range of the
display device. For images with a higher dynamic range, small intensity differ-
ences will be quantized to the same display value such that visible details are lost,
In Figure 22.3 (middle) all pixel values larger than a user-specified maximum are
set to this maximum (i.e.. they are clamped). This makes the normalization less
dependent on noisy outliers, but here we lose information in the bright areas of
the image. For comparison, Figure 22.3(right) is a tonemapped version showing
detail in both the dark and the bright regions.

In general linear scaling will not be appropriate for tone reproduction. The
key 1ssue in tone reproduction s then to compress an image while at the same
time preserving one of more attributes of the image, Different tone reproduction
algorithms focus on different attributes such as contrast, visible detail, brightness
O appearance,

Ideally, displaying a tonemapped image on a low dynamic range display de-
vice would create the same visual response i the observer as the onginal scene.
Given the limitations of display devices, this will not be achievable, .although we
could aim for approximating this goal as closely as possible.

As an example, we created the high dynamic range image shown in Fig-
ure 22.4. This image was then tonemapped and displayed on a display device,
The display device itself was then placed in the scene such that it displays its own
background (Figure 22.5). In the ideal case, the display should appear transpar-

Figure 22.4. Image used
for demonsirating the goal
of tone reproduction in Fig-
ure 22.5

524 22. Tone Reproduction

Flgure 22.5. After tonemapping tha image in Figura 22.4 and displaying it on a monitar,
the monitor is placed in the scene approximately at the location where the image was taken.
Dependent on the quality of the fone reproduction operator, the result should appear as if the
monitor is ransparent.

ent, Dependent on the guality of the tone reproduction operator, as well as the
nature of the scene being depicted, this goal may be more or less achievable,

22.1 Classification

Although it would be possible 1o classify tone reproduction operators by which
attribute they aim 1o preserve. or for which 1ask they were developed, we classify
algorithms according to their general lechnigue. This will enable us to show the
differences and similanties between a significant number of different operators,
and so, hopefully, contribute 1o the meaningtul selection of specific operators for
given tone reproduction tasks.

The main classification scheme we follow hinges upon the realization that tone
reproduction operators are based on insights gained from various disciplines. In
particular, several operators are based on knowledge of human visual perception,

The human visusal system detects light using photoreceptors located in the
retina. Light 1s converted to an electrical signal which is partially processed in
the retina and then transmitted to the brain. Except for the first few layers of
cells in the reting, the signal derived from detected light is transmitted using im-
pulse trains. The information-carrying quantity is the frequency with which these
electrical pulses occur,

The range of light that the human visual system can detect is much larger
than the range of frequencies employed by the human brain to transmit infor-
mation, Thus, the human visual system effortlessly solves the tone reproduc-
tion problem-—a large range ol luminances is transformed into a small range of
frequencies of impulse trains. Emulating relevant aspects of the human visual
system 15 therefore @ worthwhile approach 1o tone reproduction; this approach is
explained in more detail in Seetion 22.7.

22.2. Dynamic Range 525

A second class of operators is grounded in physics, Light interacts with sur-
faces and volumes before being absorbed by the photoreceptors. In computer
graphics, light interaction Is generally modelled by the rendering equation. For
purely diffuse surfaces, this equation may be simplified to the product between
light incident upon a surface (illuminance), and this surface’s ability 1o reflect
light (reflectance) (Oppenheim, Schafer, & Stockham, 1968).

Since reflectance is a passive property of surfuces, for diffuse surfaces it is,
by definition. low dynamic range—typically between (0,005 and | {Stockham,
1972). The reflectance of a surface cannot be larger than 1, since then it would
reflect more light than was incident upon the surface. Tluminance, on the other
hand, can produce arbitrarily large values and is limited only by the intensity and
proximity of the light sources.

The dynamic range of an image is thus predominantly governed by the illu-
minance component, In the face of diffuse scenes, a viable approach to tone re-
production may therefore be to separate reflectance from illuminance, compress
the illuminance component, and then recombine the image.

However, the assumption that all surfaces in a scene are diffuse is generally
incorrect, Many high dynamic range images depict highlights andfor directly
visible light sources (Figure 22.3). The luminance reflected by a specular surface
may be almost as high as the light source it reflects.

Various tone reproduction operators currently used split the image into a high
dynamic range base layer and a low dynamic range detail layer. These layers
would represent illuminance and reflectance if the depicted scene were entirely
diffuse. For scenes containing directly visible light sources or specular highlights,
separation into base and detail layers still allows the design of effective tone re-
production operators, although no direct meaning can be attached to the separate
layers. Such operators are discussed in Section 22.5.

22.2 Dynamic Range

Conventional images are stored with one byte per pixel for each of the red, green
and blue components, The dynamic range afforded by such an encoding depends
on the ratio between smallest and largest representable valoe, as well as the step
size between successive values. Thus, for low dynamic range images, there are
only 256 different values per color channel.

High dynamic range images encode a significantly larger set of possible val-
ues, the maximum representable value may be much larger and the siep size be-
tween successive values may be much smaller. The file size of high dynamic

I =

Figure 22.6. Dynamic

range of 2.65 log s units.

Figure 22.7. Dynamic
range of 3.96 log o units.

e

Dynamic

Figure 22.8.
range of 4,22 log . units,

Figure 22.9.
range of 5.01 loga units.

Crynamic

Figure 22.10.
range of 6.56 logs units.

Dynam:c

526 22 Tone Reproduction

range images is therefore generally larger as well, although at least one standard
ithe OpenEXR high dynamic range file format (Kainz, Bogart, & Hess, 2003))
includes a very capable compression scheme.

A different approach to limit file sizes 15 to apply & tone reproduction operator
to the high dynamic data. The result may then be encoded in JPEG format. In
addition, the input image may be divided pixel-wise by the tonemapped image,
The result of this division can then be subsampled and stored as a small amount of
data in the header of the same JPEG image (G, Ward & Simmons, 2004}, The file
size of such sub-band encoded images is of the same order as conventional JPEG
encoded images. Display programs can display the JPEG image directly or may
reconstruct the high dynamic range image by multiplying the tonemapped image
with the data stored in the header.

In general, the combination of smallest step size and ratio of the smallest and
largest representable values determines the dynamic range that an image encoding
scheme affords, For computer-generated imagery, an image is typically stored
as triplet of Aoating point values before it is written to file or displayed on
screen, although more efficient encoding schemes are possible (Reinhard, Ward,
Debevec, & Pattanaik, 2005). Since most display devices are still fitted with eight-
bit /A converters, we may think of tone reproduction as the mapping of floating
point numbers 1o bytes such that the result is displayable on a low dynamic range
display device.

The dynamic range of individual images is generally smaller, and is deter-
mined by the smallest and largest luminances found in the scene. A simplistic
approach to measure the dynamic range of an image may therefore compute the
ratio between the largest and smallest pixel value of an image. Sensitivity to out-
liers may be reduced by ignoring a small percentage of the darkest and brightest
pixels.

Alternatively, the same ratio may be expressed as a ditference in the logarith-
mic domain. This measure 15 less sensitive to outliers. The images shown in the
margin on this page are examples of images with different dynamic ranges. Note
that the night scene in this case does not have 4 smaller dynamic range than the
day scene. While all the values i the night scene are smaller, the ratio between
largest and smallest values is not.

However, the recording device or rendering algorithm may introduce noise
which will lower the useful dynamic range. Thus, a measurement of the dynamic
range of an image should factor in noise. A better measure of dynamic range
would therefore be a signal-to-noise ratio, expressed in decibels, as vsed in signal
processing.

22.3. Color 527

Figure 22.11. Per-channel gamma correction may desaturate the image. The laft imagea
was desaturated with a value of 8 = 0.5. The right image was not desaturated (5= 1). (See
also Plate X)

22.3 Color

Tone reproduction operators normally compress luminance values, rather than
work directly on the red, green, and blue components of a color image. Af-
ter these luminance values have been compressed into display values Ly(x, ¥,
a color image may be reconstructed by keeping the ratios between color channels
the same as they were before compression (using s = 1) {(Schlick, 1994b);

Ll)N ?
Tealoy) = (%) Lalx, 1),

Lz, 9) *
lpalz,u) = (#’;}]) Lyl u),

I.ll:'.l ?
fpalzy) = (ﬁ) Lalx,).

The results frequently appear over-saturated, because human color perception is
non-linear with respect to overall luminance level. This means that if we view
an image of a bright outdoor scene on a menitor in a dim environment, our eyes
are adapied to the dim environment rather than the outdoor lighting. By keeping
color ratios constant, we do not take this effect into account.

Alternatively, the saturation constant ¢ may be chosen smaller than one. Such
per-channel gamma correction may desaturate the results 1o an appropriate level,
as shown in Figure 22.1] and Color Plate X (Fattal, Lischinski, & Werman,
2002). A more comprehensive solution is to incorporate ideas from the field
of color appearance modeling into tone reproduction operators (Pattanaik, Fer-
werda, Fairchild, & Greenberg, 1998; Fairchild & Johnson, 2004; Reinhard &
Devlin, 2005).

528 22, Tone Reproduction

Finally, if an example image with a representative color scheme is already
available, this color scheme may be applied to a new image.Such a mapping of
colors between images may be used for subtle color correction such as saturation
adjustment or for more creative color mappings. The mapping proceeds by con-
verting both source and target images to a decorrelated color space. In such a
color space, the pixel values in cach color channel may be treated independently
without introducing too many artifacts (Reinhard et al,, 2001).

Mapping colors from one image to another in a decorrelated color space is
then straightforward: compute the mean and standard deviation of all pixels in the
source and target images for the three color channels separately,
Then, shift and scale the target image
0 that in each color channel the mean
and standard deviation of the target im-
age is the same as the source image.
The resulting image is then obtained by
converting from the decorrelated color
space to RGB and clamping negative
pixels to zero. The dynamic range of
the image may have changed as a re-

Figire 22,12, Image used for demonetrst- sult of applyving this algorithm. It is
ing the color transfer technique. Results are therefore recommended to apply this al-

shown in Figures 22.13 and 22.31. (See gorithm on high dynamic range images
atso Color Plates X1, Xl and XIV.) E & y, £ &

and apply a conventional tone reproduc-
tion algorithm afierwards, A suitable decorrelated color space is the opponent
space from Section 20,8,

The result of applying such a color transform to the image in Figure 22,12 is
shown in Figure 22,13,

Figure 22.13. The image on the left is used to adjust the colors of the image shown in
Figura 2212, The result is shown on the right. (See alse Color Plate XIl.)

22 4, Image Formation 529

22.4 Image Formation

For now we assume that an image is formed as the result of light being diffusely
reflected off of surfaces. Later in this chapter we relax this constraint to scenes
directly depicting light sources and highlights. The luminance L, of each pixel is
then approximated by the following product:

Lolz.y) = vz, 9) Ey(x,p).

Here, r denotes the reflectance of a surface, and F,, denotes the illuminance, The
subscript + indicates that we are using photometrically weighted quantities. Al-
ternatively, we may write this expression in the logarithmic domain {Oppenheim
et al., 1968):

D{x,y) =log(L, (x.y))
= log(r(z,u) Eulz.y))
= log(r(x.) + log{E.{x, y)).

Photographic transparencies record images by varying the density of the material.
In traditional photography, this variation has a logarithmic relation with Tumi-
nance. Thus, in analogy with common practice in photography, we will use the
term density representation (1) for log luminance. When represented in the log
domain, reflectance and illuminance become additive. This facilitates separation
of these two components, despite the fact that isolating either reflectance or il-
luminance is an under-constrained problem. In practice, separation is possible
only 1o a certain degree and depends on the compesition of the image. Nonethe-
less, tone reproduction could be based on disentangling these two components of
image formation, as shown in the following two sections,

22.5 Frequency-Based Operators

For typical diffuse scenes, the reflectance component tends to exhibit high spatial
frequencies due to textured surfaces as well as the presence of surlace edges. On
the other hand, illuminance tends to be a slowly varying function over space.
Since reflectance is low dynamic range and illuminance is high dynamic range,
we may (ry to separate the two components. The frequency-dependence of both
reflectance and illuminance provides a solution. We may for instance compute
the Founer transform of an image and attenuate only the low frequencies. This
compresses the illuminance component while leaving the reflectance component

530 22. Tone Reproduction

Figure 22,14, Bilateral filtering removes small details but preserves sharp gradients (left).,
The associated detail layer is shown on tha right.

largely unaffected—the very first digital tone reproduction operator known to us
takes this approach (Oppenheim et al., 1968),

More recently, other operators have also followed this line of reasoning. In
particular, bilateral and trilateral filters were used to separate an image into base
and detail layers (Durand & Dorsey, 2002; Choudhury & Tumblin, 2003). Both
filters are edge-preserving smoothing operators which may be vsed in a variety of
different ways. Applying an edge-preserving smoothing operator to a density im-
age results in a blurred image in which sharp edges remain present (Figure 22.14
ileft)). We may view such an image as a base layer. If we then pixel-wise divide
the high dynamic range image by the base layer, we obtain a detail layer which
contains all the high frequency detail (Figure 22,14 (right)).

For diffuse scenes, base and detail layers are similar to representations of
illuminance and reflectance. For images depicting highlights and light sources,
this parallel does not hold. However,
separation of an image into base and
detail layers is possible regardless of
the image’s content. By compressing
the base laver before recombining into
a compressed density image, a low dy-
namic range density image may be cre-
ated (Figure 22.15), After exponentia-
tion, a displayvable image is obtained.

Figure 22.15. An image tonemapped using
bilateral filtaring. The base and detail layers
shown in Figure 22.14 are recombined after tors may also be used to compute a local

compressing the base layer. adaptation level for each pixel, which
may be used in a spatially varying or local tone reproduction operator. We de-
scribe this use of bilateral and trilateral filters in Section 22.7,

Edge-preserving smoothing opera-

22.6. Gradient-Domain Operators 531

Figure 22.16. The image on the left (tonemapped using gradient domain comprassion)
shows & scene with highlights. These highlights show up as large gradients on the right,
where the magnitude of the gradients s mapped to & grayscale (black is a gradient of O,
white is the maximum gradient in the image).

22.6 Gradient-Domain Operators

The arguments made for the frequency-based operators in the preceding section
also hold for the gradient field. Assuming that no light sources are directly visible,
the reflectance component will be a constant function with sharp spikes in the
gradient field. Similarly, the illuminance component will cause small gradients
everywhere.

Humans are generally able to separate illuminance from reflectance in typical
scenes. The perception of surface reflectance after discounting the illuminant is
called lightness. To assess the lightness of an image depicting only diffuse sur-
faces, B. K. P. Horn was the first to separate reflectance and illuminance using a
gradient field (Horn, 1974). He used simple thresholding to remove all small gra-
dients and then integrated the image, which involves solving a Poisson equation
using the Full Multgrid Method (Press, Teukolsky, Vetterling, & Flannery, 1992).

The result is similar to an edge-preserving smoothing filter. This is accord-
ing to expectation since Oppenheim’s frequency-based operator works under the
same assumptions of scene reflectivity and image formation. In particular, Horn's
work was directly aimed at “mini-worlds of Mondrians,” which are simplified
versions of diffuse scenes which resemble the abstract paintings by the famous
Dutch painter Piet Mondrian.

Hom's work cannot be employed directly as a tone reproduction operator,
since most high dynamic range images depict light sources. However, a relatively
small variation will turn this work into a suitable tone reproduction operator. If
light sources or specular surfaces are depicted in the image, then large gradients
will be associated with the edges of light sources and highlights. These cause the
image to have a high dynamic range. An example is shown in Figure 22.16, where
the highlights on the snooker balls canse sharp gradients.

532 22. Tone Reproduction

We could therefore compress a high
dynamic range image by attenuating
large gradients, rather than threshold-
ing the gradient field. This approach
was taken by Famtal et al. who showed
that high dynamic range imagery may
be successfully compressed by integrat-
ing a compressed gradient field (Fig-
ure 22.17) (Fattal et al., 2002). Fai-
tal’s gradient domain compression is

17. Ani ton i Wi :
;irggi;lzimam ;;,::E:Eim@apm Y58 not limited to diffuse scenes.

22.7 Spatial Operators

In the following sections, we discuss tone reproduction operators which apply
compression directly on pixels without transformation to other domains, Often
global and local operators are distinguished. Tone reproduction operators in the
former class change cach pixel’s luminance values according to a compressive
function which is the same for each pixel. The term global stems from the fact that
many such functions need to be anchored 1o some values determined by analyzing
the full image. In practice, most operators use the geometric average L, to steer
the compression:

Le=exp (% Zlﬂg{ﬁ + LL-{J‘-HJ) : (22.1)
S]

In Equation 22.1, a small constant 4 is introduced to prevent the average to be-
come zero in the presence of black pixels. The geometric average is normally
mapped to a predefined display value. The effect of mapping the geometric aver-
age to different display values is shown in Figure 22.18. Alternatively, sometimes
the minimum or maximum image luminance is used. The main challenge faced
in the design of a global operator lies in the choice of the compressive function.
On the other hand, local operators compress each pixel according to a specific
compression function which is modulated by information derived from a selection
of neighboring pixels. rather than the full image. The rationale is that a bright
pixel in a bright neighborhood may be perceived differently than a bright pixel in
a dim neighborhood. Design challenges in the development of a local operator
involves choosing the compressive function, the size of the local neighborhood

22.7. Spatial Operators 533

Figure 22,18. Spatial tonemapping cperator applied after mapping the geometric average
to different display values (left: 0.12, right: 0.38).

for each pixel, and the manner in which local pixel values are used. In general,
local operators achieve better compression than global operators (Figure 22,19),
albeit at a higher computational cost.

Both global and local operators are often inspired by the human visual sys-
tem. Most operators employ one of two distinet compressive functions, which
is orthogonal to the distinction between local and global operators. Display val-
ues Lyl i) are most commonly derived from image luminances L, (x, i) by the

Figure 22,19, A gichal fone reproduction operator (left) and a local tone reproduction op-
efator (right) (Reinhard, Stark, Shirley, & Ferwerda, 2002) of each image. The local operator
shows more detail; for example the metal badge on the right shows better contrast and the
highfights are crisper.

534 22. Tone Reproduction

following two functional forms:

L,J ¥,
Lalz.y) = H (22.2)
Lalz.y) = Lo(z,v)) (22.3)

Loz,)+ flz.y)
In these equations, f(x, y) may either be a constant or a function which varies per
pixel. In the former case, we have a global operator, whereas a spatially varying
function f{x, y) results in a local operator. The exponent # is usually a constant
which 1s fixed for a particular operator.

Equation 22.2 divides each pixel's luminance by a value derived from either
the full image or a local neighborhood. Equation 22.3 has an S-shaped curve on
a log-linear plot and is called a sigmoid for that reason. This functional form fits
data obtained from measuring the electrical response of photoreceptors to flashes
of light in various species. In the following sections, we discuss both functional
forms.

22.8 Division

Each pixel may be divided by a constant to bring the high dynamic range image
within a displayable range. Such a division essentially constitutes linear scaling,
as shown in Figure 22.3. While Figure 22.3 shows ad-hoc linear scaling, this
approach may be refined by employing psychophysical data to derive the scaling
constant f{x,) = & in Equation 22.2 (G.). Ward, 1994; Ferwerds, Pattanaik,
Shirley, & Greenberg, 1996),

Alternatively, several approaches exist that compute a spatially varying di-
visor. In each of these cases, f(r,y) is a blurred version of the image, ie.,
fle,y) = LY (x y). The blur is achieved by convolving the image with a
Gaunssian filter (Chau et al., 1993; Rahman, Jobson, & Woodell, 1996). In addi-
tion, the computation of f(z, y) by blurring the image may be combined with a
shift in white point for the purpose of color appearance modeling (Fairchild &
Johnson, 2002 Johnson & Fairchild, 2003; Fairchild & Johnson, 2004).

The size and the weight of the Gaussian filter has a profound impact on the
resulting displayable image. The Gaussian filter has the effect of selecting a
weighted local average. Tone reproduction is then a matter of dividing each pixel
by its associated weighted local average. If the size of the filier kernel is chosen
too small, then haloing artifacts will oceur (Figure 22.20 (lefi)). Haloing is a com-
mon problem with local operators and is particularly evident when tone mapping
relies on division.

22.9. Sigmoids 535

Figure 22.20. images tonemapped by dividing by Gaussian blurred versions. The size
of the filtar kemel is B4 pixels for the left image and 512 pixels for the right image. For
division-based algorithms, halo artifacts are minimized by choozging largs filter kernels.

In general, haloing artifacts may be minimized in this approach by making the
filter kernel large (Figure 22.20 (right)). Reasonable results may be obtained by
choosing a filter size of at least one quarter of the image. Sometimes even larger
filter kernels are desirable to minimize artifacts. Note, that in the limit, the filter
size becomes as large as the image itself. In that case the local operator becomes
global, and the extra compression normally afforded by a local approach is lost.

The functional form whereby each pixel is divided by a Gaussian blurred pixel
at the same spatial position thus requires an undesirable tradeoff between amount
of compression and severity of artifacts.

22.9 Sigmoids

Equation 22_3 follows a different functional form from simple division, and, there-
fore, affords a different tradeoff between amount of compression, presence of
artifacts, and speed of computation.

Sigmoids have several desirable properties. For very small luminance values,
the mapping is approximately linear, so that contrast is preserved in dark areas of
the image, The function has an asymptote at one, which means that the output
mapping is always bounded between () and 1.

In Equation 22.3, the function f{x,y) may be computed as a global con-
stant or as a spatially varying function. Following common practice in electro-
physiology, we call [z,) the semi-saturation constant, Its value determines
which values in the input image are optimally visible after tonemapping. In par-
ticular, if we assume that the exponent n equals 1, then luminance values equal
to the semi-saturation constant will be mapped to (1.5, The effect of choosing
different semi-saturation constants is shown in Figure 2271,

536 22, Tone Reproduction

1.0 T T

Ly=Ly/ (Lt 1)

0.9

(R

.4

-3 -2 -1 i 1 2 3 4
1] 10 1 Lik 1 I 1] 1]

Li;

Figure 22.21. The choice of semi-saturation constant determinas how input values are
mappead to display values.

The function (i, y) may be computed in several different ways (Reinhard
et al., 2005). In its simplest form, f{x, y) is set to L, /k, so that the geometric
average is mapped to user parameter & (Figure 22.22) (Reinhard et al., 2002). In
this case, a good initial value for k is .18, although for particularly bright or dark
scenes this value may be raised or lowered. 1ts value may be estimated from the
image jtself (Reinhard, 2003), The exponent ni in Equation 22.3 may be set to 1,

In this approach, the semi-saturation constant is a function of the geometric
average, and the operator is therefore global. A variation of this global opera-

Figure 22.22, A linearly scaled image (left) and an image tonemapped using sigmoidal
compression (right).

22.9. Sigmoids 537

Figure 22.23. Linear interpolation varies contrast in the tonemapped image, The parameter
ais setto 0.0 in the lelt image, and to 1.0/in the right image.

tor computes the semi-saturation constant by linearly interpolating between the
geometric average and each pixel’s luminance;

fleyi=al,(r.y)+(1—a) A

The interpolation is governed by user parameter a which has the effect of vary-
ing the amount of contrast in the displayable image (Figure 22.23) (Reinhard &
Devlin, 2005). More contrast means less visible detail in the light and dark areas
and vice versa. This interpolation may be viewed as a half-way house between a
fully global and a fully local operator by interpolating between the two extremes
without resorting to expensive blurring operations.

Although operators typically compress luminance values, this particular op-
erator may be extended to include a simple form of chromatic adaptation. It thus
presents an opportunity to adjust the level of saturation normally associated with
tonemapping, as discussed at the heginning of this chapter,

Rather than compress the luminance channel only, sigmoidal compression is
applied to each of the three color channels:

— Iy, y)
= e A
_ Iyl u)
Foaltiinn) = X !
sl & = F)+)
Ttz n)
L” o = : 3y
IWEATY Ly + (=)

The computation of f(x, y) is also modified to bilinearly interpolaie between the
geometric average luminance and pixel luminance and between each independent
color channel and the pixel’s luminance value. We therefore compute the geo-
metric average luminance value L., as well as the geometric average of the red,
green and blue channels (7., I, and 1,,). From these values, we compute fiz, y)

538 22, Tone Reproduction

Figure 22.24. Linear interpolation lor color carrection, The parameter «© |s set to 0.0.in the
left image, and to 1.0 in the right image. (See also Color Plate X111.)

lor each pixel and for each color channel independently. We show the equation
for the red channel (f, [, y)0:

Gelz,y) = edlz,y) + (1 =€) Lylziy):
Gelz) =¢elr + {1 —¢) Ly,
felz, i) = aGula,) + (1 — a) Go{z. y),

The interpolation parameter @ steers the amount of contrast as before, and the new
interpolation parameter ¢ allows a simple form of color correction (Figure 22 .24
and Color Plate XII1).

So far we have not discussed the value of the exponent n in Equation 22.3,
Studies in electrophysiology report values between n = (1.2 and n = (1.9 (Hood,
Finkelstein, & Buckingham, 1979). While the exponent may be user-specified, for
a wide variety of images we may estimate a reasonable value from the geometric
average luminance L, and the minimum and maximum luminance in the image
(L and Loy) with the following empirical equation:

L wx T g b
n=03-407 (ij ;

s L mkm

The several variants of sigmoidal compression shown so far are all global in na-
ture. This has the advantage that they are fast to compute, and they are very
suitable for medium to high dynamic range images. For very high dynamic range
images, it may be necessary o resor 1o a local operator, since this may give some
extra compression. A straightforward method 1o extend sigmoidal compression
replaces the global semi-saturation constant by a spatially varying function, which
may be computed in several different ways.

In other words, the function f{x. y] is o far assumed to be constant, but may
also be computed as a spatially localized average, Perhaps the simplest way 1o

22.9. Sigmoids 539

accomplish this is to once more use a Gaussian blurred image. Each pixel in
i blurred image represents a locally averaged value which may be viewed as a
suitable choice for the semi-saturation constant',

As with division-based operators discussed in the previous section, we have
to consider haloing artifacts. However, when an image is divided by a Gaussian
blurred version of itself, the size of the Gaussian filter kernel needs to be large
in order to minimize halos. If sigmoids are used with a spatially variant semi-
saturation constant, the Gaussian filter kernel needs to be made small in order
to minimize artifacts. This is 4 significant improvement, since small amounts of
Gaussian blur may be efficiently computed directly in the spatial domain. In other
words, there is no need to resort to expensive Fourier transforms, In practice, filter
kernels of only a few pixels width are sufficient to suppress significant artifacts
while at the same time producing more local contrast in the tonemapped images.

One potential issue with Gaussian blur is that the filter blurs across sharp
contrast edges in the same way that it blurs small details. In practice, if there
is a large contrast gradient in the neigh-
borhood of the pixel under considera-
tion, this causes the Gaussian-blurred
pixel to be significantly different from
the pixel itself. This is the direct cause
tor halos. By using a very large fil-
ter kernel in a division-based approach,
such large contrasts are averaged out,

In sigmoidal compression schemes,
Figure 22.25. Example image used to a small Gaussian filter mirlimi.?.es the
demonstrate the scale selection mechanism chances of overlapping with a sharp
shown i Figura 22.28. contrast gradient. In that case, halos

still occur, but their size is such that they
usually go unnoticed and instead are perceived as enhancing contrast,

Another way to blur an image, while minimizing the negative effects of nearby
large contrast steps, is to avoid blurring over such edges. A simple, but compu-
tationally expensive way, is to compute a stack of Gaussian-blurred images with
different kernel sizes, For each pixel, we may choose the largest Gaussian that
does not overlap with a significant gradient.

In a relatively uniform neighborhood, the value of a Gaussian-blurred pixel
should be the same regardless of the filter kernel size. Thus, the difference be-
tween a pixel filtered with two different Gaussians should be approximately zero.

Ualthough f(x. 1) is now no longer o constant. we continue to refer to it as the semi-saturation
constint

540 22. Tone Reproduction

P

/)

Figure 22.26. Scale selection mechanism: the left image shows the scale selected for each
pixel of the image shown in Figure 22.25; the darkar the pixe!, the smaller the scals. A total
of eight different scales were usad to compute this image. The right image shows the local
average computed for each pixel on the basis of the neighborhood selection mechanism

This difference will only change significantly if the wider filter kernel overlaps
with a neighborhood containing a sharp contrast step, whereas the smaller filter
kemel does not.

It is possible, therefore, to find the largest neighborhood around a pixel that
does not contain sharp edges by examining differences of Gaussians at different
kernel sizes. For the image shown in Figure 22.25, the scale selected for each pixel
is shown in Figure 22.26 (left). Such a scale selection mechanism is employed by
the photographic tone reproduction operator (Reinhard et al., 2002) as well as in
Ashikhmin’s operator (Ashikhmin, 2002),

Once the appropriate neighborhood for each pixel is known, the Gaussian
blurred average Ly, for this neighborhood (shown on the right of Figure 22.26)
may be used 1o steer the semi-saturation constant, such as for instance employed
by the photographic tone reproduction operator:

Ly

La - 14 Dipsige

An alternative, and arguably better, approach is 10 employ edge-preserving
smoothing operators, which are designed specifically for removing small details
while keeping sharp contrasts in tact. Several such filters, such as the bilateral fil-
ter {Figure 22.27}, trilateral filter, Susan filter, the LCIS algorithm and the mean
shift algorithm are suitable. although some of them are expensive to compute (Du-
rand & Dorsey, 2002; Choudhury & Tumblin, 2003; Pattanaik & Yee, 2002; Tum-
blin & Turk, 1999; Comaniciu & Meer, 2002).

22.10 Other Approaches

Although the previous sections together discuss most tone reproduction aperators
{0 date, there are one or two operators that do not directly fit into the above cate-

22.10. Other Approachies 541

Figure 22.27. Sigmoidal compression (left) and sigmoidal compression using bilateral
filtering to compute the semi-saturation constant (rightl. MNote the improved contrast in the
sky in tha nght image,

gories. The simplest of these are variations of logarithmic compression, and the
other is a histogram-based approach.

Drynamic range reduction may be accomplished by taking the logarithm, pro-
vided that this number is greater than 1. Any positive number may then be non-
linearly scaled between 0 and 1 using the following equation:

log, (1 4+ Ly{w y))
logy, (1 + L)

Lalz,y) =

While the base & of the logarithm above is not specified. any choice of base will
do. This freedom 1o choose the base of the logarithm may be used to vary the
base with input luminance, and thus achieve an operator that is better matched
to the image being compressed (Drago. Myszkowski, Annen, & Chiba, 2003),
This method uses Perlin and Hoffert’s bias function which takes user parameter p
{Perlin & Hoffert, 1989):

f|ug|._|':pl.-' log, [1/2)

bias,(z) =

Figure 22.28. Logarithmic compression using base 10 logarithms {left) and logarithmic
compression with varying base (right],

542 22. Tone Reproduction

Making the hase b dependent on luminance and smoothly interpolating hases be-
rween 2 and 10, the logarithmic mapping above may be refined:

loggll 4+ Ly(z 4)) 1

3 lL]g {1 T L||| J } e II“P-HII'I"'.II"II"'F";I':I':J-"“;El:I 2
" - logy | 2+ 8 (L_' f-i.y})
l;-'{Illﬂl"f

For user parameter p, an initial value of around (.85 tends 1o yield plausible results
{Figure 22,28 (right}).
Alternatively, tone reproduction may be based on histogram equalization, Tra-

Llz,y) =

ditional histogram equalization aims to give cach luminance value equal probahil-
ity of occurrence in the output image. Greg Ward refines this method in a manner
that preserves contrast {Ward Larson, Rushmeier, & Piatko, 1997).

First, a histogram is computed from the luminances in the high dynamic range
image. From this histogram, a cumulative histogram is computed such that each
bin contains the number of pixels that have a luminance value less than or egual
to the luminance value that the bin represents. The cumulative histogram is a
monotonically increasing function, Plotting the values in each bin against the
luminance values represented by each bin therefore vields a function which may
be viewed as a luminance mapping function. Scaling this function, such that the
vertical axis spans the range of the display device, yields a tone reproduction
operator. This technigue is called histogram equalization,

Ward further refined this method by ensuring that the gradient of this function
never exceeds 1. This means, that if the difference between neighboring values
in the cumulative histogeam is too large, this difference is clamped 1o 1. This
avoids the problem that small changes in luminance in the input may yield large
differences in the output image. In other words, by limiting the gradient of the
cumulative histogram to 1, contrast is never exaggerated. The resulting algorithm
is called histogram adjustment (see Figure 22.29),

Figure 22.29. A linearly scaled image (lef) and & histogram adjusted image (right). fmage
created with the kind permission of the Albin Polasex museum, Winter Park, Florida.

22.11. Night Tonemapping 543

22.11 Night Tonemapping

The tone reproduction operators discussed so far nearly all assume that the im-
age represents a scene under photopic viewing conditions, i.e., as seen at normal
light levels. For scotopic scenes, Le., very dark scenes. the human visual system
exhibits distinetly different behavior. In particular, perceived contrast is lower,
visual acuity (i.e., the smallest detail that we can distinguish) is lower, and every-
thing has a slightly blue appearance,

To allow such images to be viewed correctly on monitors placed in photopic
lighting conditions, we may preprocess the image such that it appears as it we
were adapted to a very dark viewing environment. Such preprocessing frequently
takes the form of a reduction in brightness and contrast, desaturation of the im-
age, blue shift, and a reduction in visual acuity (Thompson, Shirley, & Ferwerda,
20023,

A typical approach starts by converting the image from RGB 1o XYZ, Then,
scotopic luminance V' may be computed for each pixel:

V=Y {l.i’i:ﬁ (1 4 "—_i_-x.) -].r'i.ré} .

This single channel image may then be scaled and multplied by an em-
pirically chosen bluish grey. An example is shown in Figure 22.30. If some
pixels are in the photopic range, then
the night image may be created by lin-
carly blending the bluish grey image
with the input image. The fraction o
use for each pixel depends on 17

Loss of visual acuity may be mod-
elled by low-pass filtering the night im-
age, although this would give an incor-

rect sense of blurriness. A betier ap-
proach is o apply a bilateral filler (o re-

Figure 22.30. Simulated night scene using
tha image shown in Figure 22.12, (Sea also tain sharp edges while blurring smaller

Color Plates X1 and XV.) details (Tomasi & Manduchi, 19983,

Finally, the color transfer technigue

outlined in Section 22.3 may also be used o transform a day-1it image into a
night seene. The effectiveness of this approach depends on the availability of a
suitable night image from which to transfer colors. As an example, the image in
Figure 22.12 15 transformed into a night image in Figore 22.31.

544 22, Tone Reproduction

Figure 22.31. The image on the left is used to transform the image of Figure 22.12 into a
right scang, shown here on the right, (See also Color Plate XIV.)

22.12 Discussion

Since global illumination algorithms naturally produce high dynamic range im-
ages, direct display of the resulting images is not possible, Rather than resort 1o
linear scaling or clamping, a tone reproduction operator should be used. Any tone
reproduction operator is better than using no tone reproduction. Dependent on the
requirements of the application, one of several operators may be suitable.

For instance, real-time rendering applications should probably resort to a sim-
ple sizmoidal compression, since these are fast enough to also run in real tme.
In addition, their visual guality is often good enough. The histogram adjustment
technique (Ward Larson et al., 1997) may also be fast encugh for real-time oper-
ation,

For scenes containing a very high dynamic range, betler compression may
be achieved with a local operator. However, the computational cost is frequently
substantially higher, leaving these operators suitable only for non-interactive ap-
plications. Among the fastest of the local operators is the bilateral filter due to the
optimizations afforded by this technigue {Durand & Dorsey, 2002),

This filter 1s interesting as a tone reproduction operator by itself, or it may
be used 1o compute a local adaptation level for use in a sigmoidal compression
function. In either case, the filter respects sharp contrast changes and smoothes
over smaller contrasts. This is an important feature that helps minimize halo
artifacts which are a common preblem with local operators.

An alternative approach to minimize halo artifacts is the scale selection mech-
anism used in the photographic tone reproduction operator {Reinhard et al., 2002},
although this technigue is slower to compute.

In summary, while a large number of tope reproduction operators is cur-
rently available, only a small number of fundamentally different approaches exist.
Fourier-domain and gradient-domain operators are both rooted in knowledge of

2212, Discussion '_ . 545 "l

image formation. Sputisl-domuin operators are either spatially varane (localy or
alubal in nature. These operaters ure waally buscd oo imsights gained lrom siudy-
i the lnnan visuad sysiem (aod rhe visaal sysiem oob many other specics).

rk

23

Global lllumination

Many surfaces in the real world receive most or all of their incident light from
other reflective surfaces. This is often called indirect lighting or mutual illumi-
natien, For example, the ceilings of most rooms receive little or no illumination
directly from luminaires (light emitting objects), The direct and indirect compo-
nents of illumination are shown in Figure 23.1.

Although aceounting for the interreflection of light between surfaces is
straightforward, it is potentially costly because all surfaces may reflect any given
surface, resulting in as many as O N¥) interactions for NV surfaces. Because the
entire global database of objects may illuminate any given object, accounting for
indirect illumination is often called the global illwminarion problem.

There is a rich and complex literature on solving the global illumination prob-
lem (e.g., (Appel, 1968; Goral, Torrance, Greenberg, & Battaile, 1984; Cook et

Figure 23.1. In the left and middie images, the indirect and direct lighting, respectively,
are separated out. On the right, the sum of both components is shown. Glabal ilumination
algorithms account for both the direct and the Indirect lighting.

547

548 23, Global NMurmination

al., 1984; Immel et al., 1986; Kajiva, 1986; Malley, 1988)), In this chapter we
discuss two algorithms as examples: particle tracing and path tracing. The first
is useful for walkthrough applications such as maze games, and as a component
of batch rendering. The second is useful for realistic batch rendering. Then we
discuss separating out “direct” lighting where light takes exactly once bounce
between luminaire and camera,

23.1 Particle Tracing for Lambertian Scenes
Recall the transport equation {rom Section 19.2;
Llkes) = f ik kol Lp (ko) cos Bidag.
all k,

The geometry lor this equation is shown Figure 23 2. When the illuminated point
is Lambertian, this equation reduces 1o;

L,= Ef Lyik;) cos#do;,
T Jank

where 1 is the diffuse reflectance. One way to approximate the solution to this
equation is to use finite element methods. First, we break the scene into N sur-
faces each with unknown surface radiance L. reflectance 7, and emitted radi-
ance E;. This results in the set of NV simultaneous linear equations

N
Li=E; + H‘FT‘l Z""LU Lj-‘
1=l
where &;; is a constant related to the original integral representation. We then
solve this set of linear equations, and we can render N constant-colored polvgons.
This finite element approach is often called radiosiry.

Figure 23.2. The geometry for ihe transport equation in its directional form.

23.1. Particle Tracing for Lambertian Scenes 544

An alternative method to radiosity is to use a statistical simulation approach by
randomly following light “particles™ from the luminaire though the environment.
This is a type of particle tracing. There are many algorithms that use some form
of particle tracing; we will discuss a form of particle tracing that deposits light
in the textures on triangles. First, we review some basic radiometric relations,
The radiance L of a Lambertian surface with area A is directly proportional to the
incident power per unit area: i

L= ﬁ : (23.1)
where @ is the outgoing power from the surface. Note that in this discussion, all
radiometric quantities are either spectral or RGB depending on the implementa-
tion, If the surface has emitted power @, incident power ®;. and reflectance R,
then this eguation becomes
P, + R,

7A '

If we are given a model with $, and i specified for each triangle, we can proceed
luminaire by luminaire, firing power in the form of particles from each luminaire,
We associate a texture map with each triangle to store accumulated radiance. with
all texels initiahzed to

=

L
L=—,
T A
If a given triangle has area A and w, texels, and it is hit by a particle carrying

power ¢, then the radiance of that texel is incremented by

Af =D
mA
Once a particle hits a surface, we increment the radiance of the texel it hits, prob-
abilistically decide whether to reflect the particle, and if we reflect it we choose a
direction and adjust its power.

Note that we want the particle to terminate at some point, For each surface we
can assign a reflection probability p to each surface interaction., A natural choice
would be to let p = K as it is with light in nature. The particle would then scatter
around the environment not losing or gaining any energy until it is absorbed.
This approach works well when the particles carry a single wavelength (Walter,
Hubbard, Shirley, & Greenberg, 1997). However, when a spectrum or RGB triple
is carried by the ray as is often implemented (Jensen, 2001), there is no single
£ and some compromise for the value of p should be chosen. The power o' for
reflected particles should be adjusted 1o account for the possible extinction of the
particles:

L
T

550 23. Glabal lllumination

R={0.75, 0.75, 0.75)
. I

//// R=(0.2, 0.1, 0.1)

Figure 23.3. The path of a particle that survives with probability 0.5 and iz absorbed at the
last Intersection. The RGB power is shown for each path segment.

MNote that pr can be set 1o any positive constant less than one, and that this constant
can be different for each interaction. When p > R for a given wavelength, the
particle will gain power at that wavelength, and when p < [t it will lose power
at that wavelength. The case where it gains power will not interfere with conver-
gence because the particle will stop scattering and be terminated at some point as
leng as p < 1. For the remainder of this discussion we sei p = (1.5, The path of a
single particle in such a system is shown in Figure 23.3,

A key part to this algorithm is that we scatter the light with an appropriate
distribution for Lambertian surfaces. As discussed in Section 14.4.1, we can find
a vector with a cosine (Lambertian) distribution by transforming two canonical
random numbers (£;. £2) as follows:

o (f:l}ﬁ (97)2/ o, i (2781)/ Fgs /1 — gg) . (232)

Note that this assumes the normal vector is parallel to the z-axis. For a triangle,
we must establish an orthonormal basis with w parallel 1o the normal vector. We
can accomplish this as follows:

I
W= —,
[l
e P — l—‘ul [
lpy = Poll

V=W X 1.

23.2. Path Tracing 551

where p, are the vertices of the triangle. Then, by defimtion, our vector in the
appropriate coordinates is

a = cos (276)\/Eau + sin (2n6;) Ev + /1 —Ew. (233)

In pseudocode our algorithm for p = (1.5 and one luminaire is:

For (Each of » particles) do
RGB phi = ®/n
compute uniform random point a on luminaire
compute random direction b with cosine density
done = false
while not done do
if (ray a + b hits at some point ¢ | then
add ng R/ (mA) to appropriate texel
if (£ = (1.5) then

= 2Ho
a=c
b = random direction with cosine density
else
done = true

Here £, are canonical random numbers. Once this code has run, the lexture maps
store the radiance of each triangle and can be rendered directly for any viewpoint
with no additional computation.

23.2 Path Tracing

While particle tracing is well suited to precomputation of the radiances of diffuse
scenes, it is problematic for ereating images of scenes with general BRDFs or
scenes that contain many objects. The most straightforward way to create images
of such scenes is to use parh rracing (Kajiya, 1986), This is a probabilistic method
that sends rays from the eye and traces them back o the light. Often path tracing
is used only to compute the indirect lighting. Here we will present it in a way
that captures all lighting, which can be inefficient. This 1s sometimes called brute
Sforce path tracing. In Section 233, more efficient techniques for direct lighting
can be added.
In path tracing, we start with the full transport equation:

Liks)= Lo(k,) + f plki e) Lpl kg) cos 8de;.
all k&,

552 23. Global Numination

-\—-

/ﬂ__ﬁ\

Figure 23.4. In path tracing, a ray is followed through a pixel from the eye and scattered
through the scene until it hits a luminaire.

We use Monte Carlo integration to approximate the solution to this equation for
each viewing ray. Recall from Section 4.3, that we can use random samples to
approximate an integral:

i

1 glr;)
(z)dp e —) =——,
j;esg o N = pl:)

where the x; are random peints with probability density function p. If we apply
this directly to the transport equation with NV = 1 we get

.U[kh knJLflrk1] oS H1d¢rg
piki) '

So if we have a way to select random directions k, with a known density p, we
can get an estimate. The catch is that Ly (k,) is itself an unknown. Fortunately
we can apply recursion and use a statistical estimate for Ly (k;) by sending a ray
in that direction to find the surface seen in that direction. We end when we hit
a luminaire and L. is non-zero (Figure 23.4). This method assumes lights have
zero reflectance, or we would continue to recurse.

In the case of a Lambertian BRDF (p = I/w), we can use a cosine density
function:

Li(ko) = Lo(ko) +

cos ff;

P[ks:l:

23.3. Accurate Direci Lighting 553

A dircetion with hig density can be chosen according to Bouation 23,3, This
allivws some cancellation of cosine termes inur esimate;

5okt = Lok,) — REG(K

In pseudocode such 4 puth racer lor Lambertian surfaces would operate jus
like the ray racers deseribed in Chapler 10, bul the ravecfeor function would be
i fied:

EGB raveolor(ray a + (1o, int depth)
i [ray hits at some paine ¢ then
BGB:= L. bl
if (depth <« maxdepth) then
compute randon divection d
return ¢ | 7 ravealor{c - sd. depth- 1)
clse
retorn hackgronnd color

7l

This will result in 4 very poisy image onless cither large luninatres or very large
numbers of samples gre wsed. Note the color of the luminaires muost be well above
one [sommctimes thoosands ar tens of thowsands) toe make the surfaces have Goal
colors near onc, because anly thosc rays that hit a Tuminaire by chance will maks
a conlribulion, dod most ravs will contribule only g color near cere. To penerate
the randorn direetion d, we use the same wechnigoe us we do in particle tracing
(e Bqualion 2320

In the general case wo might wanl Lo ase spectral colors ar vse 4 more general
BRDE. In practice. we should have the material class cootain member functions
W compuie 8 random dircetion gs well as compute the @oassociated with that
direetion. This way materials can be added rranspacently Lo an ioiplementation,

23.3 Accurate Direct Lighting

This section presents o more physically-based method of direct lighting than
Chapter 9. These moethods will be wselul in making global dluminason algo-
rithms more efficient. The key idea is o send shadow rays to the Juminaires as
described in Chaprer 1, bul to do 5o with careful bookkeeping based on the trans-
port equatian fram the previceas chapter. ‘The global LUomination algoritdims can
be adjusred to make sure Gy compure the direct component exactly ance. Far
example. in particle tracing, pacticles coming directy from the lominaire would
not be logged, so the particles would only encode indirect lighting. This makes

L1

Flgure 235 The direc
lighting terms far Egqua-
horn 234,

554 ' 23. Glohal Mumination

nice looking shadows much more efficiently than compuring direct lishring in the
confext of global illumination.

23.3.1 Mathematical Framework

Tor caleulate the direct Tight from ene fuptinaize (light cmitting objecl) onlo 4 noo-
emitling surfuce, woe solve a Form of the trunsport cquation lrom Scetion 19,2

Loix k) — f ok, kﬂ}L-E{x'~l—k¢jUEx£ A" o eo ﬂf:}(.ﬂj’. (2343
wl X e x|l

Recall that L, is the emitied radiance of the sowrce, v 15 a visibiline function thut
1% equal o 1 if = "sees™ x" and zero otherwise. and the other variables are ax
lluskrated in Figure 23,5

If we are to sample Lguation 23 .4 vsing Monte Cario integration, we need 1o
pick & randam poinr 1" on the sorface of the huninaiee with density function p (so
a' ~ p) Just plogging into Equation 14.5 with one sample viglds

ik ko) Loix —huTx x oo B cos B

Foolm bl = {23.5)

plxfjllx — =]
If we pick & unifurm random point on the lumioaire, then p — 174, where A s
the area of the Jucoinaine. This gives

ik Ko idan (%', —RJnix, w1 cos) cos &

L.ix,k,) = (23,61

| % —x"|?
We can use BEquation 234 w osampie plunar (eop., recranzular) Tuminaires inoa
stripi ghilumward [ashion. We simply pick a random poiant on cach lamimatre.

The code for one fuminaire 1x:

calor diregrLighti , ko, n)
pick random point 27 with narmal vector n' on light
d=x" -x
k; = dii|d|
iffray x - idhasnohits fort < 1 ¢} then
returm gk, ko 1L (x', -k, dy ' od)/ 4!
else i
retwrn (]
The ahove wonde necds some estra lests such g clamping the cosimes by zomo 1
they arc negative. Wote that the erm ||d| * comes from the distance squared tenm

23.3. Accurate Direct Lighting 555

Figure 23.6. \arious soft shadows on a backlit sphere with a square and an area light
source. Top: 1 sample. Bottom: 100 samples. Note that the shape of the light source is less
impartant than its size in determining shadow appearance

and the two cosines, e.g., n - d = (|d||cos# because d is not necessarily a unit
vecior

Several examples of soft shadows are shown in Figure 23.6.

23.3.2 Sampling a Spherical Luminaire

Although a sphere with center ¢ and radius f can be sampled using Equation 23.6,
this sampling will yvield a very noisy image because many samples will be on the
back of the sphere, and the cos @' term varies so much. Instead, we can use a more
complex p(x') to reduce noise.

The first non-uniform density we might try is p(=") = cos ', This turns out to
he just as complicated as sampling with p(x') x cos@'/||x" — x|/, so we instead
discuss that here. We observe that sampling on the luminaire this way is the
same as using a constant density function gik;] = const defined in the space of
directions subtended by the luminaire as seen from x. We now use a coordinate

556 23, Global llumination

Figure 23.7. Geomairy for direct lighting at point x from a spherical luminaira,

system delined with x at the origin, and a right-handed orthonormal basis with
w = (¢ — x]/|jc — x|}, and v = {w x n)/|[{w x n}| (see Figure 23.7). We
also define (o, o) to be the azimuthal and polar angles with respect to the ww
coordinate system,

The maximum rv that includes the spherical luminaire is given by

s = Arcsin (_ir_) = HrOCOS J'fl . (i)2-
llx — el \’,f T —el

Thus, @ uniform density (with respect to solid angle) within the cone of directions
subtended by the sphere is just the reciprocal of the solid angle 27 (1 — cos apay)
subtended by the sphere:

qlki) = =R
o (1 =il = (__xﬁ,:"))

And we get
[mau]i 1_,514__5”"/;_(”}%“[)-
v 2wy

This gives us the direction k;. To find the actual point, we need to find the first
point on the sphere in that direction. The ray in that direction 15 just (x + tk),

23.3. Accurate Direct Lighting 557

p—

Figure 23.8. A sphere with L, = 1 touching a sphere of reflectance 1. Where the two
spheres touch, the reflactive sphere should have Lix') = 1. Left: 1 sample. Middle; 100
samples. Right: 100 samples, close-up.

where k, is given by

hy Tx W O o ST
ki= | w, v, uy Sin ¢ SiT e
iy U My COE 1

We must also caleulate p(x"), the probability density function with respect 1o the
area measure (recall that the density function ¢ 1s defined in solid angle space).
Since we know that g is a valid probability density function using the w measure,
and we know that £} = dA(x') cos @' /|| x" — x||?, we can relate any probability
density function g(k; | with its associated probability density function p{x'):

p(x"} cos '

ki) = (23.7)

o =7
So we can solve for p{x'):

cos i

p(x') = —
2w’ — x| (i = E‘“ = (l:‘frf?iﬂl))

A good debugging case for this is shown in Figure 23.8.

23.3.3 Non-Diffuse Luminaries

There is no reason the luminance of the luminaire cannot vary with both direction
and position. For example, it can vary with position if the luminaire is a television.
It can vary with direction for car headlights and other directional sources. Little
in our analysis need change from the previous sections, except that L. (x') must
change to L, (x', —k;). The simplest way to vary the intensity with direction is to
use @ Phong-like pattern with respect to the normal vector n'. To avoid using an
exponent in the term for the total light output, we can use the form

(n+1}1E({x")
s b

L.(x',—k;) cos " UG,

558 23. Global lumination

where E{x') is the radiant exitance (power per unit area) at point x', and n is the
Phong exponent. You get o diffuse light for n = 1. If the light is non-uniform
across its area, e.g,, as a television set is, then £ will not be a constant.

Frequently Asked Questions

= My pixel values are no longer in some sensible zerc-to-one range. What
should | display?

You should use one of the tore reproduction techniques deseribed in Chapter 22,

« \What global illumination techniques are used in practice?

For batch rendering of complex scenes, path tracing with one level of reflection
is often used. Path tracing is often augmented with a particle tracing prepro-
cess as described in Jensen's book in the chapter notes. For walkthrough games,
some form of world-space preprocess is often used, such as the particle racing
described in this chapter, For scenes with very complicated specular transport, an
elegant but involved method, Metropolis Light Transport (Veach & Guibas, 1997)
may be the best choice.

» How does the ambient compaonent relate to global illumination?

For diffuse scenes, the radiance of a surface 1s proportional to the product of the
irradiance at the surface and the reflectance of the surface. The ambient com-
ponent is just an approximation (o the uradiance scaled by the inverse of . So
although it is a crude approximation, there can be some methodology to guess-
ing it (M. F. Cohen, Chen, Wallace, & Greenberg, 1988), and it is probably more
accurate than doing nothing. i.e.. using zero for the ambient term. Because the
indirect irradiance can vary widely within a scene, using a different constant for
each surface can be used for better results rather than using a global ambient term,

+ Why do most algorithms compute direct lighting using traditional ray
tracing?

Although global illumination algorithms automatically compute direct lighting,
and it 1s in fact slightly more complicated to make them compute only indi-
rect lighting, it is usually faster to compute direct lighting separately. There are
three reasons for this. First, indirect lighting tends to be smooth compared to

23.3. Accurate Direct Lighting 559

Figure 23.8. A comparison betwaen a rendering and a photo. Figure courtesy Sumant
Pattanaik and the Cornell Program of Computer Graphics. (See alsa Plate XXI1.)

direct lighting {see Figure 23.1) so coarser representations can be used, e.g., low-
resolution texture maps for particle tracing. The second reason is that light sources
tend to be small, and it is rare to hit them by chance in a “from the eye” method
such as path tracing, while direct shadow rays are efficient, The third reason is
that direct lighting allows stratified sampling so it converges rapidly compared to
unstratified sampling. The issue of stratification is the reason that shadow rays are
used in Metropolis Light Transport despite the stability of its default technique for
dealing with direct lighting as just one type of path to handle.

« How artificial is it to assume ideal diffuse and specular behavior?

For environments that have only maite and mirrored surfaces, the Lambertian/specular
assumption works well. A comparison between a rendering using that assumption
and a photograph is shown in Figure 23.9.

« How many shadow rays are needed per pixel?

Typically between 16 and 400. Using narrow penumbra, a large ambient term (or
a large indirect component), and a masking texture (Ferwerda, Shirley, Pattanaik,
& Greenberg, 1997) can reduce the number needed,

» How do | sample something like a filament with a metal reflector where
much of the light is reflected from the filament?

Typically the whole light is replaced by a simple source that approximates its
aggregate behavior. For viewing rays, the complicated source is used. So a car
headlight would look complex to the viewer, but the lighting code might see sim-
ple disk-shaped lights,

560 23. Global lllumination

= |sn't something like the sky a luminaire?

Yes, and you can treat it as one. However, such large light sources may not be
helped by direct lighting; the brute-force techniques are likely to work better.

Notes

Gilobal illumination has its roots in the fields of heat transfer and illumination en-
gineering as documented in Radiosity: A Programmer's Perspective (Ashdown,
1994). Other good books related to global illumination inclede Radiosity and
Global Hlumination (M. F. Cohen & Wallace, 1993), Radiosity and Realistic
Image Synthesis (Sillion & Puech, 1994), Principles of Digital Image Synthe-
siy (Glassner, 1995), Realistic Image Synthesis Using Photon Mapping (Jensen,
2001), Advanced Global Hlumination (Dutré, Bala, & Bekaert, 2002), and Phys-
ically Based Rendering (Pharr & Humphreys, 2004), The probabilistic methods
discussed in this chapter are from Monte Carlo Technigues for Direct Lighting
Calealarions (Shirley, Wang, & Zimmerman, 1996,

Exercises

1. For a closed environment, where every surface is a diffuse reflector and
emittor with reflectance 1T and emitied radiance E, what is the total radi-
ance at each point? Hine: for B = 0.5 and E = .25 the answer is (1.5,
This is an excellent debugging case,

L

Using the definitions from Chapter 19, verify Equation 23.1.

3. If we want to render a typically-sized room with textures at centimeter-
square resolution, approximately how many particles should we send to get
an average of about 1000 hits per texel?

4. Develop a method 1o take random samples with uniform density from a
disk.

5. Develop a method o take random samples with uniform density from a
triangle,

6. Develop a method to take uniform random samples on a “sky dome” (the
inside of a hemisphere).

24

Reflection Models

As we discussed in Chapter 19, the reflective properties of a surface can be sum-
marized using the BRDF (Nicodemus, Richmond, Hsia, Ginsberg, & Limperis,
1977, Cook & Torrance, 1982). In this chapter, we discuss some of the most
visually important aspects of material properties and a few fairly simple models
that are useful in capturing these properties. There are many BRDF models in
use in graphics, and the models presented here are meant to give just an idea of
non-diffuse BRDFs,

24.1 Real-World Materials

Many real materials have a visible structure at normal viewing distances. For ex-
ample, most carpets have easily visible pile that contributes to appearance. For
our purposes, such structure is not part of the material property but is, instead, part
of the geometric model, Structure whose details are invisible at normal viewing
distances, but which do determine macroscopic material appearance, are part of
the material property. For example, the fibers in paper have a complex appearance
under magnification, but they are blurred together into an homogeneous appear-
ance when viewed at arm’s length. This distinction between microstructure that
is folded into BRDF is somewhat arbitrary and depends on what one defines as
“normal” viewing distance and visual acuity, but the distinetion has proven quite
useful in practice.

In this section we define some categories of materials, Later in the chapier,
we preseni reflection models that target each type of material. In the notes at the

561

?glﬂs&

\

{95%

%

gass N10%

1%

Figure 24.1.
of light reflected and trans-
mitled by glass varies with
the angle.

The amount

Figure 24.2.
peatedly reflected and re-
fracted by glass, with the

Light is re-

fractions of enargy shown,

62 24. Reflection Models

end of the chapter some models that account for more exotic materials are also
discussed.

24.1.1 Smooth Dielectrics and Metals

Dielectrics are clear materials that refract light; their basic properties were sum-
marized in Chapter 1. Metals reflect and refract light much like dielectrics, but
they absorb light very, very quickly. Thus, only very thin metal sheets are trans-
parent at all, e.g., the thin gold plating on some glass objects. For a smooth
miterial, there are only two important properties:

1. How much light is reflected at each incident angle and wavelength;

2, What fraction of light is absorbed as it travels through the materjal for a
given distance and wavelength,

The amount of light transmitted 1s whatever is not reflected (a result of energy
conservation). For a metal, in practice, we can assume all the light is immediately
absorbed. For a dielectrie, the fraction is determined by the constant used in
Beer's Law as discussed in Chapter 1,

The amount of light reflected is determined by the Fresnel equations as dis-
cussed in Chapter 10, These equations are straightforward, but cumbersome. The
main effect of the Fresnel Equations is to increase the reflectance as the incident
angle increases, particularly near grazing angles. This effect works for transmitted
light as well. These ideas are shown diagrammatically in Figure 24.1. Note that
the light is repeatedly reflected and refracted as shown in Figure 24.2. Usually
only one or two of the reflected images is easily visible.

24.1.2 Rough Surfaces

If a metal or dielectric is roughened 1o a small degree. but not so small that diffrac-
tion occurs, then we can think of it as a surface with microfacets (Cook & Tor-
rance, 1982), Such surfaces behave specularly at a closer distance, but viewed
at a further distance seem to spread the light out in a distribution. For a metal,
an example of this rough surface might be brushed steel, or the “cloudy™ side of
most aluminum foil.

For dielectrics, such as a sheet of glass, scratches or other irregular surface
features make the glass blur the reflected and transmitted images that we can
normally see clearly. If the surface is heavily scratched. we call it transiucent
rather than transparent. This is a somewhat arbitrary distinction, but it is usually
clear whether we would consider a plass translucent or transparent.

24.2. Implementing Reflection Models 563

24.1.3 Diffuse Materials

A material is diffuuse if it is matte, i.e., not shiny. Many surfaces we see are diffuse,
such as most stones, paper, and unfinished wood. To a first approximation, diffuse
surfaces can be approximated with a Lambertian (constant) BRDF, Real diffuse
materials usually become somewhat specular for grazing angles. This is a subtle
effect, but can be important for realism,

24.1.4 Translucent Materials

Many thin objects, such as leaves and paper. both transmit and reflect light dif-
fusely. For all practical purposes no clear image is transmitied by these objects.
These surfaces can add a hue shift to the transmitted light. For example, red paper
is red because it filters out non-red light for light that penetrates a short distance
into the paper. and then scatters back out. The paper also transmits light with a
red hue because the same mechanisms apply, but the transmitted light makes it all
the way through the paper. One implication of this property is that the transmitted
coetficient should be the same in both directions.

24.1.5 Layered Materials

Many surfaces are composed of “lavers™ or are dielectrics with embedded parti-
cles that give the surface a diffuse property (Phong, 1975). The surface of such
materials reflects specularly as shown in Figure 24.3, and thus obeys the Fresnel
equations. The light that is transmitted is either absorbed or scattered back up
to the dielectric surface where it may or may not be transmitted. That light that
is transmitied, scattered, and then retransmitied in the opposite direction forms a
diffuse “reflection” component.

Note that the diffuse component also is attenuated with the degree of the angle,
because the Fresnel equations cause reflection back into the surface as the angle
increases as shown in Figure 24 4. Thus instead of a constant diffuse BRDF, one
that vanishes near the grazing angle is more appropriate.

24.2

A BRDF model, as described in Section 19.1.6, will produce a rendering which
is more physically based than the rendering we get from point light sources and
Phong-like models. Unfortunately, real BRDFs are typically quite complicated
and cannot be deduced from first principles. Instead, they must either be measured

Implementing Reflection Models

spacular
diffuse
'«\\

polish
Figure 24.3. Light hit-

ting & layerad surface can
be reflected specularly, or it
can be transmitted and then
scatter diffusaly off the sub-
strate.

Figure 24.4. The light
scattered by the substrate
is less and less likely to
make It out of the surface as
the angle relative to the sur-
face normal Increases.

I

05 . © 24, Reflection Models

and directly approximated from raw dats, or they muost be coudely approsimated
in an empirical fashion. The latter empirical stealegy is what is uswally dome, snd
the development of such approximate models 15 still an area of research. This
section discusses several desirable properties of such empirical models,

First, physical constraints imply two properiies of a BRDE model. The liest
LONSAINT 15 enarfy COnservarian:

o ull k;, Bik,) — / Pk ko) s 8, do, < L

Jall kg
It von send a haam of lighr at & swtace from any direction k,, then the total
ameunt of light reflected over all directions will be at meost the incident amouont,
The second physical property we expect all BRIM s 1o have is reciprocity:

for all]"-'1:1]’Qu f"'::k-i' k:.l] = J'J[kr.l: k't.:"

Second, we want a clear separation between diffuse and specolar components,
The reasen Lot this 6 thal, althooph there i 4 mathematically-clean delia function
formulation lor ideal specolar components, delts funeHons musl be implemented
as apecial cases in praclice. Soch specizl cases are only practical if the BRDF
iondel elearly indicutes whal is specular and what is difTuse.

Third, we wouid Like inttive paramelers. For example, one reason the Phong
madel has enjoyed such longevity is that its diffuse constant and exponent are
borh clearly retated to the intuitive properlies ol the surface, namely surface color
and highlight size.

Finally, we would like the BRDF funclion 10 be amenable to Mone Carlo
sampling. Recall fromn Chapter 14 that an integral can be sampled by & randon
points &; ~ p where p is defined with the same neasure as die integral:

fla,i
(]
j"ll ik J". Z; p{.]._]J

Fecall from Section 19.2 that the surface radiance in direction K, is given by a
transport equation:

Fika) = [ﬂ::]'(.i, IC.;.::LJ' I:kj,_] oo Hyrder;
zll ke

If we sample directions with pdf (k] as discussed in Chapier 23, then we ¢an
approximaie the surface radiance with samples:

p[g (kg Luaﬂ
Lq
Z o

943, Specular Reflection Models ' 565

This approximation will converge for any p that is non-zcro where the imlegrand
is non-zero, However, it will only comvergs well if the inlegrand is nol very Targre
relative 1o p. Tdaally, @ik should be approximately shaped like the mlegrand
Ky ko Lkl ooesdy, T practice, Lois complicated, and the best we can ae-
eompish is ty have pik) shaped somew b ke plk k1 pik ooz 8.

For example, il the BROF ix Tambortian, then il is constant und the “ideal™
k) s proportiondl wr cox #. Because the intepral of ponust be one, we can
dediace the leudimg constant:

f Coonfide =1,
all ko with# o rf2

This implics hat £ — 1%, w0 we have

. I
Pkl — msd
L
An acceptably cllicient implementation will resull as long ax p doeso’t ger loo

smagll when the integrund is nom-zero, Thus, the constant pdf will also suffice:

1
P
This emphasizes that many pdls may be aceeplable for a given BRDE model.

plk} =

24.3 Specular Reflection Models

For a metal, we typically specify the reflectance at normal incidence Hy (A0 The
reflectance should vary accovding ro the Fresnel equations, and a good approi-
maticn is given by (Schlick, 1994a)

Rifh) — Rold) 4 (1 - Re (a1 cosé®,

This approximation allows s to jusl set the normad reflectance ol the metal cither
[rem ata or by cye.

Fur a diclecnic, the same formela works for reflectance, However, we Can set
Rl A) in lerms of the reltuctive index n(AL

w107
Re(h) — —) .
n(A AL

Typically, n docs not wary with wavelength, bat for applications where disperion
is imporant, @ can vary. The relractve indices thar are often wselul include water
(o= 1330, plass (e = 1.4 tovee — 1.7, and diamuond (v = 2.4},

566 24, Reflection Models

Figure 24.5. Renderings of polishad tiles using coupied model. These images were pro-

duced using @ Monte Carlo path tracer, The sampling distribution for the diffuse term is
cos it

24.4 Smooth Layered Model

Reflection in matie/specular materials, such as plastics or polished woods, is gov-
erned by Fresnel equations at the surface and by scattering within the subsurface.
An example of this reflection can be seen in the tiles in the renderings in Fig-
ure 24.5. Note that the blurring in the specular reflection is mostly vertical due
ter the compression of apparent bump spacing in the view direction. This effect
causes the vertically-streaked reflections seen on lakes on windy days; it can either
be modeled using explicit micro-geometry and a simple smooth-surface reflection
madel or by a more general model that accounts for this asymmetry.

We could use the rraditional Lambertian-specular model for the tiles, which
linearly mixes specular and Lambertian terms. In standard radiometric terms, this
can be expressed as

I4(A)

w

pld, &, 8, 8'A) = + Rops(8, 6,8, '),

where R;(A) is the hemispherical reflectance of the matte term, H, is the specu-
lar reflectance, and g, is the normalized specular BRDF (a weighted Dirac delta
function on the sphere). This equation is a simplified version of the BRDF where
1, 15 independent of wavelength, The independence of wavelength causes a high-
light that is the color of the luminaire, so a polished rather than a metal appearance
will be achieved. Ward (G. J. Ward, 1992) suggests to set Hy(A) + R, < 1lin
order o conserve energy, However, such models with constant 1, fail to show
the increase in specularity for steep viewing angles. This is the key point: in the
real world the relative proportions of matte and specular appearance change with
the viewing angle.

24.4. Smooth Layered Model 5687

One way to simulate the change in the matte appearance is to explicitly dampen
I A) as K, increases (Shirley, 1991):

RalA)1 — Re(8))

Pl &' ' A) = Rp(0)p.(0,0.6,8") +

where H¢(#) is the Fresnel reflectance for a polish-air interface, The problem with
this equation is that it is not reciprocal, as can been seen by exchanging # and #';
this changes the value of the matte damping factor because of the muliplication
by (1 — Hy(#)). The specular term, a scaled Dirac delta function, is reciprocal,
but this does not make up for the non-reciprocity of the matte term, Although this
BRDF works well, its lack of reciprocity can cause some rendering methods 1o
have ill-defined solutions.

We now present a model that produces the matie/specular tradeofl while re-
maining reciprocal and energy conserving. Because the key feature of the new
madel is that it couples the matte and specular scaling coefficients, it is called a
coupled model (Shirley, Smits, Hu, & Lafortune, 1997),

Surfaces which have a glossy appearance are often a clear dielectric, such
as polyurethane or oil, with some subsurface structure, The specular (mirror-
like) component of the reflection is caused by the smooth dielectric surface and
is independent of the structure below this surface. The magnitude of this specular
term is governed by the Fresnel equations.

The light that is not reflected specularly at the surface is transmitted through
the surface. There, either it is absorbed by the subsurface, or it is reflected from
a pigment or a subsurface and transmitted back through the surface of the pol-
ish. This transmitted light forms the matte component of reflection. Since the
matte component can only consist of the light that is transmitted, it will naturally
decrease in total magnitude for increasing angle.

To avoid choosing between physically plausible models and models with good
qualitative behavior over a range of incident angles, note that the Fresnel equa-
tions that account for the specular term, R¢(#), are derived directly from the
physics of the dielectric-air interface. Therefore, the problem must lie in the
matte term. We could use a full-blown simulation of subsurface scattering as
implemented, but this technigue is both costly and requires detailed knowledge
of subsurface structure. which is usually neither known nor easily measurable.
Instead. we can modify the matie term to be a simple approximation that capiures
the important qualitative angular behavior shown in Figure 24.4.

Let us assume that the matte term is not Lambertian, but instead is some other
function that depends only on #, & and A: o, (6, #'.A). We discard behavior
that depends on ¢ or &' in the interest of simplicity. We try to keep the formu-
las reasonably simple because the physics of the matte term is complicated and

W

&0 ' 24. Reflaction Models

soretimes reguires unkoown paramerers. We cxpect te matle e 1o be close w
constant, and reughly rotationally symmetric (He et al., 1992),

An obvious cundidale [br the matle component gy (0087 A0 that will be re-
ciprocal is the separafde Torm K5, (A FI8F 187 Tor some constant k und mate
relteelanee purameter B, (A We could merge & oand & (A iow a single term,
hutl we choose to koep Lhern separated because this makes 10 more infaitive w set
f [A)—which must be berween (1 and | Tor gl wavekenglhs. Separable BROFS
have been shown o have several computational advantuees, thus we ase the sep-
arahle muxdel;

Pl &) = R 850.08, 0 0 &) - kR AL ('),

We knowe that the matte component can only contain eocrgy not relecred in the
surtace (specular) eomponent. This means that for Ho (8 — L, the incidem
and reflecied energy arc the sume, which suggests the Jollowing constraint on the
BRDF for each ingident # and A

A

I
el 1 Ik fid / i loosd sing'ag — 1. {24.1%
L
We can see that f(#) must be proportional to 71 Hy 08000 If we ussume that

matte compenents that absork some energy have the same directional param as
this ideal. we pet a BRDF of the form

Pl e & A — Relfip (B, 0 8 + B (AL — Bp{0)[1 — mpidh)].

We could now insert the full form of the Fresnel equations ro get & (#), and then
use energy conservation to solve for constraines on &, Instead, we will use the
approximation discussed in Section 24.1.1 We find that

Jif o i1 = {1 — cos@)?),

Applying Lquation 24.1 vields

21
R 3
b 2w Aol (24.2)

The full coupled BROF is then
P':ﬂ1 'i":'l-‘]llzc.':'i‘r:)"l:; =
[Ro + (1 — cos 81711 — R} p. (8 6087 0) -
RO (1 con®)®] 1 (1 cost’}?]. {24.3)

24.5. Rough Layered Model 569

The results of running the coupled model is shown in Figure 24.5. Note that
for the high viewpoint, the specular reflection is almost invisible, but it is clearly
visible in the low-angle photograph image, where the matte behavior is less obvi-
s,

For reasonable values of refractive indices, Hy is limited to approximately the
range (.03 to 0.06 (the value Ry = 0.05 was used for Figure 24.5). The value of
R, in a traditional Phong model is harder to choose, because it typically must be
tuned for viewpoint in static images and twoned for a particular camera sequence
for animations. Thus, the coupled model is easier to use in a “hands-off™” mode.

24.5 Rough Layered Model

The previous model is fine if the surface is smooth. However, if the surface is
not ideal, some spread is needed in the specular component. An extension of the
coupled model to this case is presented here (Ashikhmin & Shirley, 2000). At
a given point on a surface, the BRDF is a function of two directions, one in the
direction towards the light and one in the direction towards the viewer. We would
like to have a BRDF model that works for “common™ surfaces, such as metal and
plastic, and has the following characteristics:

1. Plausible: as defined by Lewis {Lewis, 1994}, this refers to the BRDF
obeying energy conservation and reciprocity,

2. Anisotropy: the material should model simple amisotropy, such as seen on
hrushed metals.

3. Imtuwitive parameters: for material, such as plastics, there should be pa-
rameters i, for the substrate and 1, for the normal specular reflectance as
well as two roughness parameters n,, and 7.

4. Fresnel behavior: specularity should increase as the incident angle de-
creases.

5. Non-Lambertian diffuse term: the material should allow for a diffuse
term, but the component should be non-Lambertian o assure energy con-
servation in the presence of Fresnel behavior.

fi. Monte Carlo friendliness: there should be some reasonable probability
density function that allows straightforward Monte Carlo sample generation
for the BRDF.

570 24. Reflection Models

|
| //m

light 5. &
T :

1 HE

Figure 24.6. Geometry of reflection. Mote that ky, k2, and h share a plane, which usually
does net include n,

A BRDF with these properties is a Fresnel-weighted Phong-style cosine lobe
model that is anisotropic,

We again decompose the BRDF into a specular component and a diffuse com-
ponent (Figure 24.6). Accordingly, we write our BRDF as the classical sum of
two parts:

plky k) = polky k) + palky ks, (24.4)

where the first term accounts for the specular reflection (this will be presented in
the next section). While it is possible to use the Lambertian BRDF for the diffuse
term pg(ky. ko) in our model, we will discuss a better solution in Section 24.5.2
and how to implement the model in Section 24.5.3. Readers who just want to
implement the model should skip to that section,

2451 Anisotropic Specular BRDF

To model the specular behavior, we use a Phong-style specular lobe but make this
lobe anisotropic and incorporate Fresnel behavior while attempting to preserve
the simplicity of the initial mode. This BRDF is

‘m {n | l'_'I.J“" cos® g, sin® &

ko) = X q ~h). (245
Pl kz) o g e e e SRS S

Again we use Schlick™s approximation to the Frespel equation:
Fki-h) = By + (1 - #)(1 = (k- b))%, (24.6)

where H, is the material’s reflectance for the normal incidence. Because k, - h =
k, - h, this form is reciprocal. We have an empirical model whose terms are

24.5. Rough Layered Model 571

ﬁ
Figure 24.7. Metallic spheras for exponents 10, 100, 1000, 10000 increasing both left-to-
right and 1ep-to-bottam

chosen to enforce energy conservation and reciprocity. A full rationalization for
the terms is given in the paper by Ashikhmin, listed in the chapter notes,

The specular BRDF of Equation 24.5 15 useful for representing metallic sur-
faces where the diffuse component of reflection is very small, Figure 24.7 shows
a set of metal spheres on a texture-mapped Lambertion plane, As the valoes of
parameters n,, and n, change. the appearance of the spheres shift from rough
metal to almost perfect mirror, and from highly anisotropic to the more familiar
Phong-like hehavior.

24.5.2 Diffuse Term for the Anisotropic Phong Model

[t is possible to use a Lambertian BRDF together with the anisotropic specular
term; this is done for most models, but it does not necessarily conserve energy. A

572 24. Reflection Models

Figura 24.8. Thrae views for a1, = n, = 400 and a diffuse substrate. Note the change in
infensity of the specular reflection.

better approach is a simple angle-dependent form of the diffuse component which
accounts for the fact that the amount of energy available for diffuse scattering
varies due to the dependence of the specular term’s total reflectance on the inci-
dent angle. In particular, diffuse color of a sorface disappears near the grazing
angle, because the total specular reflectance is close to one. This well-known ef-
fect cannot be reproduced with a Lambertian diffuse term and is therefore missed
by most reflection models,

Following a similar approach to the coupled model, we can find a form of the
diffuse term that is compatible with the anisotropic Phong lobe:

28R, (cosd,® ool) 2
dlky ko) = 1 - R, 1—-11-— 1—[1— :
il ko) 3 { T J(.))) ((3)

(24.7)
Here A is the diffuse reflectance for normal incidence, and R, is the Phong lobe
coefficient, An example using this model is shown in Figure 24.8,

2453 Implementing the Model
Recall that the BRDF is a combination of diffuse and specular components:
plki ka) = polki, ka) + palks k). (24.8)

The diffuse component is given in Equation 24.7; the specular component is given
in Equation 24.5. It is not necessary to call trigonometrie functions to compute

24.5. Aough Layered Model 573

the exponent, so the specular BRDF can be written:

(Jfkhkz] _ i A+ 1)y 4 1) ; h;'I""I'-:’.P:I'::I.:I;I::III!:I::L_!l'.l:dlllfl':-l'hn: If-‘“h).

B =
(24.9)

In a Monte Carlo setting, we are interested in the following problem: given k;,
generate samples of ks with a distribution whose shape is similar to the cosine-
weighted BRDF. Note that greatly undersampling a large value of the integrand is
a serious error, while greatly oversampling a small value is acceptable in practice.
The reader can verify that the densities suggested below have this property.

A suitable way to construct a pdf for sampling is to consider the distribution
of half vectors that would give rise to our BRDF. Such a function is

_ Vit + 1{ne +1)
prih) = o
where the constants are chosen to ensure it is a valid pdl.

We can just use the probability density function p, (b} of Equation 24,10 o
generate a random h. However, to evaluate the rendering equation, we need hoth
a reflected vector k,, and a probability density function p(k,,). It is important Lo
note that if you generate h according to py, (h) and then transform to the resulting
k..

[[:Ih_:lh" eo&” dhn,, 5in? Ii"l {_24. 1”’}

ko, = -k, +2(k;-h)h, (24.11)
the density of the resulting k,, is not py, (k). This is because of the difference in
measures in h and k.. So the actual density pik,) is

(h
plks) = palh) (24.12)

 A{kh)
Note that in an implementation where the BRDF is known to be this model, the
estimate of the rendering equation is quite simple as many terms cancel out.

It is possible to generate an h vector whose corresponding vector k, will point
inside the surface, i.e., cos#, <). The weight of such a sample should be set
to zero. This situation corresponds to the specular lobe going below the horizon
and is the main source of energy loss in the model, Clearly, this problem becomes
progressively less severe as mn,,, 1, become larger.

The only thing left now is to describe how to generate h vectors with the pdf
of Equation 24.10. We will start by generating h with its spherical angles in the
range (£, ¢) € [0. 5] = [0, 5]. Note that this is only the first quadrant of the
hemisphere. Given two random numbers (£;, £2) uniformly distributed in [0, 1],

we can choose
I + 1 b
i = arctan (.u.' i tan (%)) ; (24.13)
Ty 4

574 24, Reflection Models

and then use this value of ¢ 1o obtain # according to
cos = (1 — .fg_]l'ﬂn" con? gy ain? gtl) (24.14)

To sample the entire hemisphere, we vse the standard manipulation where &) is
mipped to one of four possible functions depending on whether it is in [0, (1.25),
(.25, 0.5), [0.5. (L.75), or [0.75, 1.0). Forexample for £; € [0.25, 0.5), find (1 -
0.5 — £;)) via Equation 24,13, and then “flip” it about the ¢ = /2 axis. This
ensures full coverage and siratification.

For the diffuse term, use a simpler approach and generate samples according
to 4 cosine distribution. This is sufficiently close to the complete diffuse BRDF
1o substantially reduce variance of the Monte Carlo estimation.

Frequently Asked Questions

e My images look loo smooth, even with a complex BRDF. What am | do-
ing wrang?

BRDFs only capture subpixel detail that is too small 1o be resolved by the eye.
Most real surfaces also have some small variations, such as the wrinkles in skin,
that can be seen. I you want true realism, some sort of texture or displacement
map is necded.

« How do | integrate the BRDF with texture mapping?

Texture mapping can be used 1o control any parameter on a surface. So any kinds
of colors or control parameters used by a BRDF should be programmable.

e | have very pretty code except for my material class. What am | doing
wrong?

You are probably doing nothing wrong, Material classes tend to be the ugly thing
in everybody's programs. I you find a nice way to deal with i, please let me
know! My own code uses a shader architecture (Hanrahan & Lawson, 1990)
which makes the material include much of the rendering algorithm.

Notes

There are many BRDF models described in the literaure, and only a few of
them have been described here. Others include (Cook & Torrance, 1982 He

24.5. Rough Layered Model 575

et al., 1992; G.). Ward, 1992; Oren & Nayar. 1994; Schlick, 1994a; Lafor-
tune, Foo, Torrance, & Greenberg, 1997, Stam, 1999; Ashikhmin, PremoZe, &
Shirley, 2000; Ershov, Kolchin, & Myszkowski, 2001; Matusik, Pfister, Brand, &
MeMillan, 2003; Lawrence, Rusinkiewicz, & Ramamoorthi, 2004: Stark, Arvo,
& Smits, 2005). The desired characteristics of BRDF models is discussed in Mak-
ing Shaders More Physically Plausible (Lewis, 1994),

Exercises

l. Suppose that instead of the Lambertian BRDF we used a BRDF of the form
Cleos” #;. What must C' be to conserve energy?

2. The BRDF in Exercise | is not reciprocal. Can you modify it to be recipro-
cal?

3. Something like a highway sign is a retroreflector. This means that the
BRDF is large when k; and k,, are near each other. Make a model inspired
by the Phong medel that capiures retroreflection behavior while being re-
ciprocal and conserving energy.

25

Image-Based Rendering

A classic conflict in computer graphics is that between visual realism and the abil-
ity to interact. One attempt to deal with this problem is to use a set of captured or
precomputed realistic images and to attempt to interpolate new images for novel
viewpoints (Chen & Williams, 1993). This approach is called image-based ren-
dering, abbreviated [BR.

The basic idea of IBR idea is illustrated in 2D for a database of two images
in Figure 25.1. Given two images, we approximate an image as seen from a

Figure 25.1. Given two Images as seen from e, and e,, image-based rendering can be
used to make an approximation to the image that would be seen from a new viewpoint .

ST

578 25, Image-Based Rendering

novel viewpoint. The quality of this approsimation depends on the detail of the
two source images. the underlying geometry of the object, and the relation of the
three points. In this chapter, we discuss the most brute-force IBR method which
uses very regular samples and straightforward interpolation.

25.1 The Light Field

For every point in space, light is passing through it in every direction. For a given
point a and direction d, the amount of light is quantified by the radiance (see
Section 19.1.5). For the set of all points and all directions, we can describe the
radiance at every location/direction pair as a function L that we evaluate to get
the radiance:

L{a,d) = the radiance at point a in direction d.

An image is just a set of evaluations of this L function for a given eyepoint a and
a structured set of directions d;. Technically, this function varies with wavelength
{spectral radiance} and time. Usually we will think of RGB moments of the ra-
diance and a steady-state in time, This L function has no standard name, but the
most common one used in graphics is the lght fiedd,

e

Figure 25.2. Several point'direction pairs in the light field. Because they lie along the same
light ray, they have the same valus,

25,2, Creating a Novel Image from a Set of Images 579

There 15 a great deal of structure in the light field. Most importantly, L does
not vary along a line for a flixed direction. This is illustrated in Figure 25.2, where

L{a,d) = L(b,d) = L{c.d) = L{e,d).

MNote that if there in a object along the line, then the light field may be different
for points on either side of the object.

Before we can try to approximate values of the light field at novel viewpoints,
we must establish the dimensionality of the light field. At first glance it is 5D,
because it varies over 3D position and 2D direction. Indeed, this is the dimen-
sionality of the function inside a participating medium, such as smoke. However,
because the value of the function does not vary along a line, we can creale
line-space and evaluate the function for a directed line in 3D space:

L{A} = the radiance along a directed line A,

A line in 3D is a 4D entity (see Section 14.1.3), This means we should be able
to store radiance samples along rays as points in a 4D space. A way to do this is
explored in the next section.

25.2 Creating a Novel Image from a Set of Images

If we want to create an image from a novel viewpoint using only images from
a precomputed set of images, then the key is to organize the data for this pur-

(u¥i=i2.0)

Figure 25.3. Any ray through the two rectangles can be parametarized by the two sels of
texture coordinates, (u,v) and (5.1) of the hitpoints of the rays and the rectangle.

Figure 25.4, O (uw)
sample for all (st} values
can be created with a single
traditional rendering pass.

=
sl

Flgure 25.5. A ray from a
new viewpoint that hits both
planes will have a well de-
fined {u,w.51) value,

580 25, Image-Based Rendering

pose (Gortler, Grzeszczuk, Szeliski, & Cohen, 1996; Levoy & Hanrahan, 1996).
To simplify things, we create a space with dense samples and do some simple
form of interpolation. As in any graphics application, we first ask whether recti-
lingar samples and simple interpolation will work. Recall from Section 14.1.3 that
one way to parameterize line space is to use two sets of 2D rectilinear coordinates
on a pair of parallel planes. For a finite set of view directions, we can just use the
rectilinear coordinates on a pair of parallel rectangles. This idea is illustrated in
Figure 25.3, where a given ray is associated with a {u, v, s, {) quadruple.

A nice thing about storing radiance samples this way is that we can assemble
the database using a traditional renderer. For a given position e associated with
a single (1,) sample, we can compute an array of samples (pixels) on the (s, 1)
plane as shown in Figure 25.4. We can then render one image per {u, v) position
to complete the 4D database.

Given a rectilinearly sampled database of radiances in (u, v, 5, 1) space, and
given a novel view position, all rays not behind or parallel to the two planes will
have a well defined (u, v, s, 1) value (Figure 25.5). For rays through the two
rectangles, we will have stored radiances near that 4D point, and we can do some
form of interpolation to compute a new value,

The interpolation scheme we use will determine the quality of the image. We
could use full quadralinear interpolation between the nearest sixteen data points
in [u. v, &, t) space. We could also use nearest-neighbor interpolation which will
access less data, but will also result in blockier images.

Frequently Asked Questions

+ What is the best place to store images?

The basic conflict is between organizing images so they are convenient [or in-
terpolation versus storing them so they are compact and vield accurate results,
For convenient interpolation, we want the simple data structures described in this
chapter. For compactness, we want the images stored as near to the surfaces they
show as is possible. In the limit, this just means putting the images directly on
the surfaces, ie., texture mapping. Once you do this, a traditional rendering al-
gorithm is most appropriate. The process of using images to create a traditional
geometry/texture model is called image-based modeling.

« What are the applications of IBR?

This is the million-dollar question. So far they have been limited in practice.
However, virtual shopping and web education seem like natural applications for

25.2, Creating a Novel Image from a Set of Images 581

IBR. In each of these, a set of photographs can be used to make compelling inter-
active experiences. For example, to browse homes for sale, the ability to move the
viewpoint is essential to get a feel for the house. Another natural application is
sports. IBR has already been used in a professional football game with linear eye
motion and nearest-neighbor (i.e., no) interpolation. In such applications brute-
force techniques are likely to dominate, because there is little processing time
available berween image capture and image display. Perhaps the most promising
application for IBR is to create rich material appearance by making textures en-
code occlusion effects (Dana, Ginneken, Nayar, & Koenderink, 1999). This gives
the simplicity of traditional graphics but also makes more convincing detail.

= Is the light field defined at surfaces?

For a point on an opaque surface there is a well defined radiance for each direc-
tion. The incoming directions will be incident radiance, and the outgoing direc-
tions will be outgoing radiance. These are sometimes called field radiance and
surfuce radiance, respectively. . Thus, the light field is defined for such surfaces,
although it is not continuous (it is zero inside the surface, and we define the light
field on the surface as the limit function as taken from outside the surface). For
dielectric surfaces, the light field is different for a full sphere of directions for both
surface and field radiance, so the light field needs the sets of directions to be well
defined in that case.

» What is depth correction?

For matte scenes, we sometimes want to take advantage of approximate geometric
information if it exists, Such a case is shown in Figure 25.6. Applying depth
correction can give much crisper results, but it does complicate the interpolation
scheme.

Exercises

"

I. Given a Hh m % 5 m % 3 m room, how many texels are needed to have
texture maps on the walls, floor, and ceiling at | square cm resolution? 1f
we wanted to store a light field near the center of the room and use it to
reconstruct images without depth cormrection, how many data points would
be needed to reconstruct novel images with the same accuracy as the tradi-
tional texture maps?

2. How many operations are needed for nearest-neighbor interpolation in 4D
ling-space versus full 4D linear interpolation?

Figure 25.5. While the
agrey arrow is closer to a,
it may be better to use the
value for b, because the
rays hit at a nearby point.

26

Visualization

One of the main application areas of computer graphics is visualization, where
images are used to aid a vser in understanding data (Hansen & Johnson, 2005),
Sometimes this data has a natural geometric component, such as the elevation data
for a region of the Earth. Other data has no obvious geometric meaning, such as
trends in the stock market. This non-geomeltric data might nonetheless benefit
from a visual representation, because the human visual system is so good at ex-
tracting information from images. The crucial part of visualizing non-geometric
data is how the data is mapped to a spatial form. The general area of visualiz-
ing non-geometric data is called information visualization . This chapter will re-
strict itself to the more well-understood problems of visualizing 2D and 3D scalar
fields, where a scalar data value is defined over a continuous region of space.

26.1 2D Scalar Fields

For simplicity, assume that our 23 scalar data is defined as

il @ wpod) &
iyl g REShgEa, 26.1)
1] otherwise,

over the square (=, y) € [—1, 1]%. In practice, we ofien have a sampled represen-
tation on a rectilinear grid that we interpolate to get a continuous field. We will

ignore that issue in 2D for simplicity.

583

/

=075
=il
| =0

(1N
N

Figure 26.1. A contour
plot for four levels of the
function 1 - x° - y" 5

Figure 26.2. A random
density plot for four levels of

the function 1 - x° - '_.r2

Figure 26.3. A greyscale
density plot of the function

1-3-:9-);2.

¥

Figura 26.4. A height plot
of the function,

584 26. Visualization

One way to visualize a 2D field is to draw lines at a finite set of values
flr.y) = f; (shown for the function in Equation 26.1 in Figure 26.1). This
i5 done on many topographic maps to indicate elevation. Isocontours are excel-
lent at communicating slope, but are hard to read “globally™ to understand large
trends and extrema in the data.

Another common way [o visualize 2D data is to use small pseudorandom dots
whose density is proportional to the value of the function. This is shown for our
test function in Figure 26.2. Such random density plots are useful for display on
black-and-white media, but are otherwise usually not a good choice for visualiza-
tion. Random density plots look smoother and smoother as more and smaller dots
are used maintaining overall density. As the dot size shrinks below human visual
acuity, the image looks smooth. This results in a grevscale continuous tone plot
of the function. It is hard for humans to read such plots, because our ability to
detect absolute intensity levels is poor. For this reason, color or thresholding is
often used. This is shown in greyscale in Figure 26.3. Formally, we can specify
such a mapping with just a function ¢ that maps scalar values to colors:

e]-:Rl—r[U.]]g.

Here [0, 1]* refers to the RGB cube. A common strategy is to specify a set of
colors to which specific values map and linearly interpolate colors berween them.
A set of colors that increases in intensity and cycles in hue is often used. Such a
set of colors for the domain [0, 1] is

9(0.00) = (0.0,0.0,0.0)
(0.25) = (0.0,0.0, 1.0}
(0.50) = (1.0,0.0,0.0)
g(0.75) = (1.0, 1.0, 0.0)
g(1.00) = (1.0, 1.0, 1.0}

These plots are often called pseudocelor displays. We can also display the func-
tion as a height plot as shown in Figure 26.4. This type of plot is good for showing
the shape of a function. Note that this plot makes it more obvious that the function
is spherical.

Often, more than one of these methods are used together in a single image,
such as a colored or contoured height plot. Another hybrid technique that is often
used is to shade the height plot and view it orthogonally from above. This is a
shaded relief map. often used for geographical applications.

26.2. 30 Scalar Fields 585

26.2 3D Scalar Fields

In 3D we can use some of the same techniques as in 2D. We can make a con-
tour ploy, where each contour is a 3D surface called an ivosurface. We can also
generalize a random density plot to 3D by scattering particles in 3D, If we take
the limit, as we did in 2D to get a pesudocolor display, then we get direct volume
rendering. These two methods are covered here. 1L is not clear how to generalize
height plots, because we have run out of dimensions,

26.2.1 Isosurfaces

Given a 3D scalar field f(x, i, =) we can create an isosurface for f{e, y, 2) = fu.
In practice, we will have f defined in a 3D rectilinear table that we interpolate for
intermediate values, An example image 15 shown in Figure 26.5

There are two basic approaches to creating images of isosurfaces. The first is
to explicitly create & polygonal representation of the isosurface and then render
that representation using standard rendering technigues. The second is to use ray
tracing (o create an image by direct intersection calculation. In ray tracing, no
cxplicit surface is computed. The explicit approach is better when we have small
datasets, or we need the isosurface itself rather than just an image of it. The ray
tracing approach is better for large datasets where we just need the image of the
isosurface.

Creating Polygonal Isosurfaces

The basic idea of creating polygonal isosurfaces treats every rectilinear cell as
a separate problem (Wyvill, McPheeters, & Wyvill, 1986, Lorensen & Cline,
1987). Given an isovalue fj, there is a surface in the cell if the minimum and
maximum of the eight vertex values surround fi;. What surfaces occur depend on
the arrangement of values above and below f;. This is shown for three cases in
Figure 26.6,

There are a total of 2% = 256 cases for vertices above and below the isovalue.
We can just enumerate all the cases in a table, and do a look-up. We can also
take advantage of some symmetries to reduce the table size. For example, if we
reverse above/below vertices, we can halve the table size, If we are willing to do
Hips and rotations, we can reduce the table to size 16, where only 15 of the cases
have palvgons,

Figure 26.5. An isosur-
face from the NIHMIM Visl-
hle Female data set.

e

Figure 26.6. Three cases
for polygonal iscsurfacing.
The black vertices are on
one side of the isovalue,
and the white on the other.

588 26. Visualization

Ray Tracing

Although the above algorithm, usually called marching cubes is elegant and sim-
ple. some care must be taken to ensure accurate results (Nielson, 2003),

The algorithm for intersecting a ray with an isosurface has three phases: travers-
ing a ray through cells which do not contain an isosurface, analytically computing
the isosurface when intersecting a voxel containing the isosurface, shading the re-
sulting intersection point (Lin & Ching, 1996; Parker, Parker, et al., 1999). This
process is repeated for each pixel on the screen.

To find an intersection, the riay a + th traverses cells in the volume checking
each cell to see if its data range bounds an isovalue. If it does, an analytic com-
putation is performed to solve for the ray parameter ¢ at the intersection with the
ispsurface:

Pl +1T0 Yo + s 20 +12) — pigg =0

When approximating g with a trilinear interpolation between discrete grid points,
this equation will expand 1o a cubic polynomial in £, This cubic can then be solved
in closed form to find the intersections of the ray with the isosurface in that cell,
Only the roots of the polynomial which are contained in the cell are examined.
There may be multiple roots corresponding 1o multiple intersection points. In this
case, the smallest ¢ (closest 1o the eve) is used. There may also be no roots of the
polynomial, in which case the ray misses the isosurface in the cell.

r{h ?1! 21
{uvw)=(0,1,1)

Pot1

X W40 24
(uvwk={1,1,1)

Pt

%ge ¥ou 29
{uv,w)=(0,0,1)

Fooy

%10 ¥oo 24

{uwwi={1,0,1)
Pio

X0 Y1 Zp
{u.vw)=(0,1,0)
i

Poo

TR AT

Xa: Yor Zo {uvwli=(1,1,0)
(u,vwi=(0,0,0) Pi1o
Poon

X1 Yoo Zp

(u,vwi=(1,0,0)

Pio0

Figure 26.7. The geometry for a cell. A “nice” uvw coordinate system is used to make
interpodation math cleanear.

25.2. 90 Scalar Figlds - 587

A rectilinear ¥olume is composed of a three-dimensional array of point sam-
ples that are afigned to the Cartesian axes and are equally spaced in a given dimen-
sion. A single cell from such a volume is shown in Figare 2677, Othar cells cun
be zenerated by exchanging indices (3, 5, &) for the zeros und enes in the fgure.
The density at a point within the cell is found using frilirear inlerpolation:

Al = =l =101 — wpang {262}
[l —ae){l — 2 wlpom
TN R T N R T

a1 — el - wlppon

il —ul 1 T

+
+
+ will — 23 awlpmn
+
+ 0wl = e
+

Coowll el whennn

where
. ' q =
ahees wo o= (26.3)
Jn — &
n o= Y
W
W= i .
S 1]
Mote thal
N Bl
1—n = oo, (26.4)
€ =
W —
|- = .M1
1 —in
Iz
1—w — ! .
2] I
Tf we redefine wg = 1w and wy — w., and use similar definitions for

T, Uy, iy, e, then we get (Fipure 26.8)
= Z Dha Ty 0425 -
i =11l

It i interesting that the true tolinear 1sosurtace can be fairly complex. The case
where two opposite comers of the cobe are on oppasite sides of the isovalue from

Figure 26.9. A true fri-
linear isosurface generated
using direct ray tracing.

588 26. Visualization

(1.4} 1 (0,0}
Vol
J_,,.,."r /Eﬂ
a a
(Xo¥o) (0.0] o (1.0)

Figure 26.8. Various coordinate systems usad for interpolation and intersection.

the other six vertices is shown in Figure 26.9. This is quite different from the two
triangles given by polygonal isosurfacing for that case. One advantage of direct
intersection with the trilinear surface is that ambiguous tases do not arise.

For a given point (&, i, 2} in the cell, the surface normal is given by the gra-
dient with respect to (.4, 2)

- dp dp dp
N=Wp= (25 2220
i (B.r iy ﬁ'z)

Thus. the normal vector of (N, Ny, N.) = Vpis

=1y
N, = Z 'I__]'_:_xp%

i k=01 3 _ To
3 I:'—I]J'+'ulu_.'*
1o =l L Lo
(=1)% 1 yn
Ne= Y ——Yun
e R

Given a ray p = a + th, the intersection with the isosurface occurs when
PP) = Pigo- We can convert this ray into coordinates defined by (uq, v, wo)t
Py = ag + thy and a second ray defined by p; = a; + fby. Here the rays are in
the two coordinate systems (Figure 26.8);

Ty — Ly Y1 —Ya 2 —zu)
- 1

] (]]
ag = [ug, vy, wy) = - ;
L1 —Tp Y1— W 21— 2o

and

bbb Il Ut K
by = (ug, v, wy) = == . ‘
£ —dg W — W 1 — &0

26.2. 3D Scalar Fields 588

These equations are different becanse ap is a location and by is a direction, The
equations are similar for a; and by:

Ta =20 Ya— Yo zu—Zn)

il (i (1
a; = (uj. v, wy) = ,)
I — I Y1 — W 21— &

b =L =i —Zh
b, = ':"1*'!'!11*“-'1” = (j ¥) -
=g ¥1— W 51— %0

MNote that # is the same for all three rays; it can be found by traversing the cells and
doing a brute-force algebraic solution for ¢, The intersection with the isosurface
pIP) = pjgp occurs when

Pisg = Z {u':‘ + Eu:-"]l {'u_';' +iu;‘-} I[:Lj: +£ulﬁ} Pk
i =01

This can be simplified to a cubic polynomial in ¢

AP+ B2 4+ Ct+ D=0,

where
bbb
4 = E W U P
i, k0,1
B o= 3 (utetul+ abudul +ubodud) p
g e=0,1
s b, a0 a . i .} 5
C = Y (whfuf+ufedud + uviuwl) i,
i, k=01
s = a0, .08
D = —=piso+ Z Uy Uy Wy Pig-
i3, k=0,1

The solution to a cubic polynomial is discussed in Cubic and Quartic Roots
(Schwarze, 1990), His code is available on the web in several Graphics Gems
archive sites. Two modifications are needed to use it: linear solutions (his code
assumes A is non-zero), and the EQN_EPS parameter is set to |.0e-30, which
provided for maximum stability for large coefficients.

26.2.2 Direct Volume Rendering

Another way to create a picture of a 3D scalar field is to do a 3D random density
plot using small opaque spheres. To avoid complications, the spheres can be made

Figure 26.10. A thin siab
filled with cpaque spheres.

590 26. Visualization

a constant color and, in effect, they are light emitters with no reflectance. Such
a random density plot can be implemented directly using ray tracing and small
spheres, or with 3D points using a traditional graphics APL As in 2D, we can
take the limit as the sphere size goes to zero. This yields a 3D analog of the
pseudocolor display and is usually called direct volume rendering (Levoy, 1988;
Drebin, Carpenter, & Hanrahan, 1 985; Sabella, 1988; Upson & Keeler, 198R).

There are two parameters that affect the appearance of a volume rendering:
sphere color, and sphere density. These are controlled by a user-specified fransfer
Sunction:

color = e(p]),

number density = d(p],
Here the number density is the number of spheres per unit volume. If we assume
that the spheres have a small cross-sectional area «, and we consider a region

along the line of sight that is of a small thickness & s such that no spheres appear
to overlap (Figure 26. 10), then the color is

Lis+ As)=(1— F)L(s) + Fe,

where F' is the fraction of the disk that is covered by spheres as seen from the
viewing direction. Because the disk is very thin, we can ignore spheres visually
overlapping, so this fraction is just the total cross-sectional area of the spheres
divided by the area A of the disk:

 daADs

Py

F = das,

which yields
Lis+ As) = (1 — da As)L(s) + dadse.

We can rearrange terms 1o give something like a definition of the derivative:

Lis+ As) — Lis)
—_— = %
R al(s) + dac

If we take the limit As — (0, we get a differential equation:

il
= —dalls A
F el [h} + dar

For constant o and ¢ this equation has the solution

L(s) = L{0)e~®* + ¢ (1 — e~9¢).

26.2. 3D Scalar Fields 591

color = ¢,

Figure 26.11. For direct volume rendering, we can take constant size steps along the ray
and numaerically integrate.

This would allow us to analytically compute color for constant density/color re-
gions. However, in practice both d and ¢ vary along the ray, and there is no
analytic solution to the differential equation. So, in practice, we use a numer-
ical technigue. A simple way to proceed is to start at the back of the ray and
incrementally step along the ray as shown in Figure 26.11.

We can apply the original equation for each As slice:

Lis+ As)=(1l—d{r,y, zlaAs)Lis) + d(x, 4, 2)a Asclz. y, 2).

In pseudocode, we initialize the color to the background color ¢ and then traverse
the volume from back to front:

find volume entry and exit points a and b

L=1%
As = distance({a, b)
p=b

fori=11w0 Ndo
p=p-As(b-a)
L=L+4(1—d{pladsl + dipla Ase(p)

The step size As will determine the quality of the integration, To reduce the
number of variables, we can use a new density function g(p) = d(p)a.

In some applications direct volume rendering is used to render something sim-
ilar to surfaces. In these cases the transfer function on density is “on” or “off™ and
the gradient of the number density is used to get a surface normal for shading.

592 26. Visualization

Figure 26.12, A maximum-intensity projection of the NIH/MNIM Visibie Female dataset. Each
pinel containg a greyscale value that cormasponds to e maximum density encountered along
that ray. Image courtesy Steve Parker,

26.2. 3D Scalar Fields 503

This can produce images of psendosurfaces that are less sensitive 1o noise than
traditional 1sosurfacing.

Another way to do volume rendering is maximum-intensity projection. Here,
we set each pixel to the maximum density value encountered along a ray. This
turns the ray integration into a search along the ray which is more efficient. Fig-
ure 26.12 shows an image generated using maximum-intensity projection.

Frequently Asked Questions

= What is the best transfer function for direct volume rendering?

The answer depends highly on the application and the characteristics of the data.
Some empirical tests have been run and can be found in (Pfister et al., 2001). Var-
ious optical models used in direct volume rendering are described in (Max, 1995},

» What do | do to visualize vector or tensor data?

Vector data is ofien visualized using streamlines, arrows, and line-integral conve-
{urion (LIC). Such technigues are surveyed in (Interrante & Grosch, 1997). Tensor
data is more problematic. Even simple diffusion tensor data is hard to visualize
effectively because you just run out of display dimensions for mapping of data
dimensions. See (Kindlmann, Weinstein, & Hart, 2000).

» How do | interactively view a volume by changing isovalues?

One way is to use ray tracing on a parallel machine. The other is to use polygonal
isosurfacing with a preprocess that helps search for cells containing an isosurface.
That search can be implemented using the data structure in (Livnat, Shen, & John-
som, 1996).

= My volume data is unstructured tetrahedra. How do | do isosurfacing or
direct volume rendering?

Isosurfacing can sull be done in a polygonal fashion, but there are fewer cases to
preprocess, Ray tracing can also be used for isosurfacing or direct volume ren-
dering, but the traversal algorithm must progress through the unstructured data
either using neighbor pointers (Garrity, 1990) or by adding cells o an efficiency
structure {Parker, Parker, et al., 1999),

594 26. Visualization

= What is "splatting” for direct volume rendering?

Splatting refers to projecting semitransparent voxels onto the screen using some
sort of painters” algorithm (Laur & Hanrahan, 1991).

Exercises

|, If we have a tetrahedral data element with densities at each of the four
vertices, how many “cases” are there for polygonal isosurfaces?

2. Suppose we have n® data elements in a volume. If the densities in the
volume are “well behaved,” approximately how many cells will contain an
isosurface for a particular isovalue?

3. Should we add shadowing to direct volume rendering? Why or why not?

Index

ASD converter, 73 pssociativity, 80, 83
adjoint matrx, 127 attribute variables, 391
aerial perspective, 509 average, 281
aliasing, &7, 72, 74, 75, 98, 99,
‘ H2-114, 117 B-spline

ambient shading, 193 control points, 335
amaodal mmpleticm. 508 curve, 134, 335
analog-to-digital converter, 73 filter, 90, 99
angle, 20 function

cosine, 21 Fourier transform, 110

sine, 21 interpolation, 342
animation. 2 non-uniform, 340
anti-umbra, 231 NURBS, 344
antialiasing, 67, 98, 99 repeated knots, 342
aperture problem, 493 uniform cubic, 339
APL 1.3 uniform quadratic, 337
apparent motion, 493 Bézier curves, 327
application program interface, 3 backface elimination, 265
arc length, 305 barycentric coordinates, 43, 44, 63, 300
arc-length parameterized curve, 37 basic execution model, 390
array basis, 24

padded, 274 function, 310

tiling, 274 mairix, 313
artistic shading, 197 vectors, 24
assert(), 11 Bernstein basis polynomials, 329

613

614

bidirectional reflectance distribution
function, 458, 561
Lambertian 459
bijection, 17
binary space partitioning
(BSP) tree, 177, 236
blending function, 310, 316
blurring, 96
bounding box, 219
bounding volume, 265
hierarchy, 222
box filter, 67, 75, 83, 89, 99, 100
box function, 78, 83
Fourier transform, 109
BRDF, 458, 561
Lambertian, 439
bricking, 274
BSP tree, 177, 236
ray tracing, 227
built-in variables, 391
bump mapping, 392

CADICAM, 3
callbacks, 4
CHITETA
digital, 68, 466
candela, 462, 489
canonical, 160
canomical form, 310, 312
cunomcal view valume, 160
Cardinal spline, 325
cardinality, 48
Cartesian coordinates, 24
Cartesian product, 16
Catmull-Rom filter, 90, 91
Catmull-Rom splines, 325
CCD, 68
cellular automata, 371
chromatic adaptation, 537
chromaticity, 469
CIE scotopic sensitivity function, 472
cirgle, 20
¢lipping, 175, 259
line segment, 264
triangle, 264
closed interval, 17
CMOS, 68

fndex

coecfficients, 310
cofactor matrix, 127
cofactors, 125
color, 465, 486
24 bit, 55
additive, 55
constancy, 488
huoe, 475
opponent, 474
RGE, 51, 54, 465
saturation, 475
space
CIE, 487
HSV, 488
RGE, 472, 473, 487
trichromatic, 466
value, 475
state, 383
column vector, 123
commutativity, 80, §1, B3
compositing, 56
compression, 68
lossless, 68
lossy, 68
sigmoidal, 537
cones, 486
conformational parameters, 365
clnstant
semi-saturation, 5335, 536
constructive solid geometry, 229
continuity, 92, 308
continuous motion, 494
control driven programming, 405
control point, 311, 335
convex hull, 333
convolution, 75, 76, 108, 112
and Fourier transform, 108
by separable filter, 94, 95
continuous, 8284
discrete, 76-81
diserate-continuous, 83, §6
of an image, 95
properties, 79, 80, 83
smoothing, 76
two-dimensional, 87, B8
coordinate frame, 29

Index 615

coordinates explicit schemes, 369
global, 272 implicit schemes, 369
local, 272 differential geometry, 308
polar, 21 diffuse reflection, 459

cormespondence problem, 500 digital sudio, 72

cosine, 21 digital camera, 68

Cox-de Boor recurrence, 341 digital-to-analog converter, 73

Cramer's rule, 121, 129, 207 Drirac delta function, 84, 111

cross product, 26 direct lighting, 554

crossed disparity, 501 direct volume rendering, 590

CRT, 52 Direct3D, 4

CSG (constructive solid geometry), 229 directional hemispherical reflectance, 459

cube map, 254 directional light, 192

cubic polynomials, 315 discontinuous motion, 493

FHEE discrete impulse, 80, 81
dynamic occlusion, 503 discriminant, 19

culling, 265 . disparity, 500
backlace elimination, 265 displacement map, 253

curve, 30, 301 d?ﬁplu}'
arc-length parameterized, 37 CRT. 52
B—S}_Jl'mﬂ. 334, 335 iil“ﬂr]ﬁl‘cd. 495
implicit, 3{! raster, 51
m‘:h;‘i' 36,40 resolution, 51

cyele (viewing), 178 oo el

D{A converter, 73 dmumr,:e

data bus, 384 NS

data sink, 391 distribution ray tracing, 229

data source, 391 domain, 16

de Casteljau algorithm, 333 dot product, 25

dEhugging, 12 double, 9

degree of continuity, 92 drop shadow, 97

delta function, 84, 111

density representation, 529 efficiency, §

dependency scheme, 319 eigenvalues, 129

depth buffer, 186 eigenvectors, 1249
integer, 186 environment maps, 254

depth of field, 233 event-driven programming, 408

derivative, 31 expressive parameters, 365

determinant, 119, 125 expected value, 285, 288
Laplace's expansion, 125 explicit curve, 302

diagonal matrix, 124 eye

dizgonalization, 130 cones, 486

dielectric, 213 retina, 466

difference equation, 368, 369 rods 486

816

familiar size, 512

Fechner's law, 484

field radiance, 456, 581

field-of-view, 173, 490

filter
B-spline, 90, 99
hilateral, 530
box. 67, T8, B3, 84, 89,99, 100
Catmull-Rom, 90, 91
degree of continuity, 92
edge-preserving smoothing, 531
Gaussian, 90, 94, 94
identity, 80, 54
impulse response, 91
interpolating, 90, 91
Mitchell-Netravali, 91
overshoot, 92
resampling, L, 102
ringing, 92
ripple free, 92
separable, 93, 103
separable tent, 93
shifted, 81
tent, 83, B4, BO_93 09
trilateral, 530

filtering. 78

Mexors, 364

flicker fusion, 494

float, 9

focus of expansion, 514

forward Kingmatics, 362

Fourier series, 105

Fourier transform, 105-110

fovea, 490

fragment program, 388

fragment shader, 388

frame of reference, 29
allocentric, 497
egocentric, 497
exncentric, 497

frame rate, 380, 495

frame update rate, 495

free-form curve, 302

frequency-based operators, 529

Fresnel equations, 214, 562

full multigrid method, 331

Index

function, 15
bijection, 17
domain, 16
inverse, 17
inversion, 292
range, 16

gamma, 33, 472
gamma correction, 54
Ciaussian
Founer transform, 110
fileer, 90), 94, 94
gaze direction, 164
geometric continuity, 309
geometric surface, 381
gif, 68
global coordinates, 28, 272
global illumination, 547
Gourand color interpolation, 63
GPL, 389
general purpose computation, 398
gradient, 31
gradient domain
compression, 531
operator, 531
graphics hardware, 379
processor, 389
Graphics Processing Unit, 389
graphics state, 343
GLUT
APL 411
elements, 403, 419
events, 412
Callback, 419
paint, 415
redraw, 415
RedrawRoutine(), 416
service registration, 419, 434
service routines, 416, 419, 420
timer, 413

haloing, 534

hard shadow, 231

Hermite cubic, 324
polynomials, 324

Hermite form, 315

Index

hidden surface elimination, 177
BSP tree, 177
ray tracing, 203
z-buffer, 186
high dynamic range images. 521
highlight, 194
histogram adjustment, 542
histogram equalization, 542
homogeneous coordinates, 152, 169
homogenization, 169
horzon ratio, 513
hue, 460, 475, 488
hypotenuse, 20

IBR, 577
identity filter
continuous, 84
discrete, 80
identity matrix, 123
IEEE floating point, 5
illuminance, 525
illumination
global, 547
image, 9, 71
blurring, 96
compression, 68
convolution, 95
drop shadow, 97
Gaussian-blurred, 539
high dynamic range, 521
processing, 2
reconstruction, 99-102
resumpling, 99, 100, 102
resmpling, 101
sharpening, 47
unshurp mask, 97
image-based modeling, 580
image-based rendering, 577
immediate mode rendering, 384
implicit curve, 30, 302
gradient, 31
implicit function, 302
importance sampling, 289
impulse
discrete, 80, §1
response, 91
train, 111

include guards, 11
incremental computation, 59
independent random variable, 286
indirect lighting, 547
information visualization, 3, 583
infrared light, 462
inline functions, 10
instancing, 216
integral geometry, 281
integration, 280

Monte Carlo, 288, 552

quasi-Monte Carla, 290
intensity, 463
interpolate, 308
interpolating filter, 90, 91
interpolation, 42

B-spline, 342

linear, 42

normal vector, 197
intersection

ruy—bounding box, 219

ray-implicit, 205

ray-parametric, 206

ray-sphere, 205

ray-trizngle, 206
interval, 17

closed, 17

open, 17

set operations, 17
inverse Fourier transform, 106
inverse function, 17
inverse kinematics, 363
inverse matrix, 124, 128
inverse optics, 496
inversion

function, 292
irrndiance, 454
isosurface, 585

Jacobian, 363
Jaggies, 98
Java, 4
jittering, 231
jpeg, 69

kernel, 398
kinetic depth effect, 502

8§17

N

G618

knot. AEH
veclor, 319

Lagrunge toon, 317
Lumbert's cosing iaw, 192
Larthesctizn, |91
BRDFE 334
Lww of Larpe Mumbers, 288
LN, 52
level.of-detail (LODY, 5
lighit
directioaal, 192
infrred, 462
ultraviolct, 462
light field, 578
lighting. 263
dives), 534
incltrect, 347
wi-sided, 193
lightnesy, 475, 481487, 531
Cconstancy, i1
Toenie curve, 331
line
drawing, 57
incremenial, 59
implicid. 33
noral connlinates, 283
parymels, 37, 4, 61
LEDTHENL, 4]
sfopee, 33
slope-intercept fonm, 33
VECTOr ForTe, H)
linear independence. 24
lingar inmepralaien, 42
inear perspecitye, 503
Mnear scaling, 523, 534
WTsr syshen
solution, 129
Cramer's tule, 121
local coorfinatas, 29, 272
location, 23
LoD (Jevel-of-detail), 5
loparithe, 18
melaral, 15
huminaire, 547
nuR-difivse, 558

Iurpimgnee, 462, 324
suomopie. 472, 543
lugreinance drstributicn, 485

luminance mapping funcikon, 342
Twriaons etficiency fumcion, $62

aeppings, 15

marching cubes, 536

maecrial
dieleome, 213

matrix, 121
aljoim, 127
cofacrer, 127
wpfyctors, |25
detcrminant, 119
diggonal, 124
diagonal form, 130
icdentity, 123
rverse, [2d, 128
imversion using SYLH 154
nulplicaiom, 122
product wit scaber, 122
projeciion. 172
square, 122
stack, 373
synimetriy, 123
ranspose. 123

AR -Ttensity projection, 393

FTMEAG LRI

2D liney. 282

3D lings, 283

FUTO DS sons, S8
mesh, 248
rnetamer, 467, 408, 436, 487
Metropolis sampling, 295
lcrehaeets, S
midpoine alpoeithe, 57
MTP-mapnicg, 236
it he - Mestravali filker. 91
modelinge, 2, 4

inpdetview-conroller, 421, 422423

companent, 421
Frammewqrk, 423
model. 422
view, 422, 423

moird pittemn. 75, $%. 9% 103, 230

Index

Index

monitor
gamma, 53
phosphors, 472
tristimulus values, 473
white point, 472

Monte Carlo integration, 288, 552
importance sampling, 289
stratified sampling, 289

morph, 3635

motion blur, 234

mtion capture, 72, 366
electromagnetic, 366
aptical, 366

mation parallax, 502

moving average, 76

mustual illumination, 547

nanometer, 452
natural cubic, 323

splines, 323
natural logarithm, 18
non-photorealistic rendering, 197
non-uniform B-Spline, 340
normal coordinates, 283
normal direction, 383
normal interpolation, 197
normal vector, 31, 149

at vertices, 193
number density, 590
NURBS, 344
Myquist frequency, 113, 114

Nyqguist-Shannon sampling theorem, 114

object recognition, 509

oeclusion coes, 503

oculanmotor cue
accomodation, 498

convergence, 498
vergence, 498
offset, 23
open interval, 17
OpenGL, 4
operator, 10

frequency-based, 529
gradient-domain, 531
Spatial, 532

tone reproduction, 542

opponent colors, 474

aptic flow, 501

origin, 23

orthogonal, 24

orthographic projection, 164
arthographic view volume, [62
orthonormal, 24

basis, 27
overshoot, 92
padded array, 274
painter's glgorithm, 178
parallelepiped

volume, 119
parallelogram

area, 119, 125

parallelogram rule, 23
parameterization, 304

natural, 304
parametric

continuity, 309

curve, 36, 40, 303

function, 302

line, 40

surface, 41
parametnzation

arc-length, 305
particle tracing, 549
path tracing, 551
penumbra, 231
persistent application state, 422
perspective

projection, 166

three point, 166
Phong exponent, 196
Phong normal interpolation, 197
Phong shading, 194
photometry, 451, 462
photon, 452
photoreceptors, 486, 524
physics-based animation, 367
picking, 201, 236
pictorial depth cues, 503
pixel, 51
plane, implicit, 38
point, 23
polar coordinates, 21

619

620

polygon
ray intersection, 208
polynomial
Hermite cubic, 324
position, 23
power, 453
ppm, 69
primitives, 380, 381
probability, 284
density function, 254
expected value, 285
procedural curve, 302
programming models
maing), 404

control-driven programming, 404
event-driven programming, 404

external control model, 404

internal control model, 404

MainEventLoopl), 408
projection

orthographic, 164
projection matrix, 172

property
global, 308
local, 308

proximal stimulus, 478
pseudocolor plot, 584
psychophysics, 485
Pythagorean theorem, 20

quadratic equation, 19, 205
quadric curve, 36
quasi-Monte Carlo inegration, 2600

raciance, 435, 578
field, 456, 581
surface, 456, 581
radiant exitance, 453
radiometry, 451
radiosity, 463, 548
random point density plot, 584
random sampling, 230
random variable, 286
independent identically
distributed, 288
range, 16
raster display, 51

rasterization
triangle, 63
ray, 41
shadow, 211
ray tracing, 201, 209
distribution, 229
instancing, 216
object-oriented, 210
re-parameterization, 304
real-time graphics, 380
reconstruction, 71, 85, 86, 99-102, 112-114,
117
antifact, T3, 74
reflect transform, 140
reflectance, 323
directional hemispherical, 459
reflection
Lambertian, 191
specular, 212
total internal, 214
refraction, 216
refresh rate, 495
regular sampling, 230
rejection method, 294
relative size, 512
rendering, 2
non-photorealistic, 197
rendering equation, 461
renormalization, 103
resampling, 99-102, 104, 117

separable, 104
resampling filter, 101, 102
resolution, 51
reting, 466

retroreflection, 575

RGB color, 9, 51, 54, 465
right-handed coordinates, 27
rigid body transforms, 153
rigid skinning, 364

rnging, 92

ripple free, 92

rods, 486

rotation transform, |38

row vector, 123

Index

saccades, 490
sampling, 71
aliasing, 72, 74, 75
Jiteering, 231
random, 230
regular, 230
sample rate, 73, 75
stratified, 231
undersampling, 73, 74
sampling theory, 104
saturation, 475, 487
scalar produoct, 25
scale selection mechanism, 540
scale transform, 136
scaling
linear, 534
scene graph data structure, 383
Schlick approximation, 214
scotopic luminance, 543
semi-saturation constant, 535, 536
separable filter, 93, 103, 104
separable tent filter, 93
set, 16
Cartesian product, 16
operations
om intervals, 17
shading, 191, 265
ambient, 193
artistic, 197
diffuse, 191
Lambertian, 191
Phong, 194
shadow
anti-umbra, 231
attached, 505
detached. 505
hard, 231
penumbra, 231
soft, 231
umbra, 231
shadow map. 255
shadow ray, 211
shape constancy, 514
shared-point scheme, 319
sharpening, 97
shear transform, 137

621

shifted filter, 81
sigmoid, 534, 535
sigmoidal compression, 537
signal processing, 71
signed distance, 35
silhouettes, 197
sine, 21
single instruction, multiple data
(SIMD) processor, 389
singular value decomposition
(SVID), 131, 144
for matrix inversion, 154
singular values, 131
site, 308
size constancy, 514
slant, 497, 505
slope, 31
smooth skinning, 364
smoothing, 76
soft shadow, 231
spftware engineering, 8
solid texture
turbulence, 245
spatial operator, 532
spectral distribution, 485
spectral energy, 453
spectral power, 454
spectrum, 485
specular highlights, 525
specular reflection, 212
sphiere
implicit form, 205
normmal vector, 206
vector form, 205
splatting, 594
spline, 307
curve, 307
spot light, 255
square matrix, 122
state attribores, 382
steady state, 453
step function, 78, 92
Steven's law, 484
stratified sampling, 231, 289
stream processor, 389
structure-from-motion, 502

622

subdivision scheme, 331
subjective contour, 483
support, 77
surface radiance, 456, 581
surface
implicit, 38
parametric, 41
SVD, 131, 144
symmetric matrix, 123

tangent, 31
vector, 31
temporal aliasing, 495
tent filter, 83, 89, 93 90
tent function, 83, 84
Fourier transform, 110
exture
marble, 245
texture mapping, 239
MIP-mapping, 256
three-point perspective, 166
iff, 69
filing, 274
tilt, 497, 505
TIN, 248
tone reproduction, 522
tone reproduction operator, 542
tonemapping, 522
total internal reflection, 214
transfer function, 520
transformation
matrix, 135
reflection, 140
rigid body, 153
rotate, 138
scale, 136
shear, 137
transport equation, 551, 554
transpose, 123
triangle, 43
barycentric coordinates, 43
fans, 266
mezh, 248, 381

winged-edge data structure, 270

random point selection, 300
ray intersection, 206

rasterization, 63
strips, 266

Index

trinngular irregular network (TIN), 248

trichromatic color theory, 466
tristimulus values, 469
turbulence function, 2435
two-sided lighting, 193

ultraviolet light, 462
umbra, 231
uncrossed disparity, 301
undersampling, 73, 74, 113
uniform cubic B-spline, 339
uniform quadratic B-spline, 337
uniform variables, 391
unit vector, 23
units
extensive, 453
intensive, 453
unsharp mask, 97
user-defined variables, 191

value, 475

viriable
attribute, 391
built-in, 391
uniform, 391
user-defined, 391

varance, 287

variation diminishing property, 330

varying data, 391

vector, 23
addition, 23
hasis, 24
cross product, 26
dot product, 25
equality, 23
length, 23, 24
linear independence, 24
normal, 31, 38, 149
orthogonal, 24
orthonormal, 24
projection, 23
subtraction, 24
unit, 23
zero, 23

Index

VETEX
buffer objects, 385
function calls, 382
normal, 193
program, 388
shader, 388
video games, 3
view volumse
orthographic, 162
view-up vector, 164
viewing, 164
field-of-view, 173
virtual reality, 2
vigion
foveal, 491
high acuity, 489
phottopic, 489
scotopic, 489
visual acuity, 480

623

visual attention, 516

visual cue, 496, 498
disparity, 496
maotion, 496
ocularmotor, 496
pictorial, 496

visualization, 2, 583
information, 583

volume rendering, 585, 590
maximum-intensity projection, 393
transfer function, 590

wagon wheel illusion, 495
Weber's law, 484
winged-edge data structure, 270

z-huffer, 186

integer, 186
ZEro measure sets, 280
zero vector, 23

